To determine which expression is equivalent to [tex]\( 20w - (4w + 3w) \)[/tex], let's simplify the given expression step by step.
1. Start with the original expression:
[tex]\[ 20w - (4w + 3w) \][/tex]
2. Simplify inside the parentheses first:
[tex]\[ 4w + 3w = 7w \][/tex]
3. Substitute [tex]\( 7w \)[/tex] back into the expression:
[tex]\[ 20w - 7w \][/tex]
4. Now, subtract the coefficients of [tex]\( w \)[/tex]:
[tex]\[ 20w - 7w = 13w \][/tex]
Thus, the expression [tex]\( 20w - (4w + 3w) \)[/tex] simplifies to [tex]\( 13w \)[/tex].
Therefore, the correct equivalent expression is:
[tex]\[ \boxed{13w} \][/tex]
So, the answer is (B) [tex]\( 13w \)[/tex].