Consider the equation:
[tex]\[ 0 = x^2 - 10x + 10 \][/tex]

1. Rewrite the equation by completing the square.

Your equation should look like [tex]\((x+a)^2 = b\)[/tex] or [tex]\((x-c)^2 = d\)[/tex].

[tex]\[
(x - \_ )^2 = \_
\][/tex]

2. What are the solutions to the equation?

Choose one answer:
A. [tex]\[ x = -5 \pm \sqrt{15} \][/tex]
B. [tex]\[ x = 5 \pm \sqrt{15} \][/tex]
C. [tex]\[ x = -15 \pm \sqrt{5} \][/tex]
D. [tex]\[ x = 15 \pm \sqrt{5} \][/tex]



Answer :

Sure, let’s solve the given equation by completing the square step by step.

### Step 1: Move the constant term to the right side

Given the equation:
[tex]\[ 0 = x^2 - 10x + 10 \][/tex]

We can rewrite it as:
[tex]\[ x^2 - 10x + 10 = 0 \][/tex]

### Step 2: Move the constant term to the right side

Rearrange the equation to isolate the x terms:
[tex]\[ x^2 - 10x = -10 \][/tex]

### Step 3: Complete the square

To complete the square, we add and subtract the square of half the coefficient of [tex]\(x\)[/tex]. The coefficient of [tex]\(x\)[/tex] is [tex]\(-10\)[/tex], so half of [tex]\(-10\)[/tex] is [tex]\(-5\)[/tex], and squaring it gives [tex]\((\-5)^2 = 25\)[/tex].

Add and subtract 25 inside the equation:
[tex]\[ x^2 - 10x + 25 - 25 = -10 \][/tex]
[tex]\[ (x - 5)^2 - 25 = -10 \][/tex]

Then, move the [tex]\(-25\)[/tex] to the right side:
[tex]\[ (x - 5)^2 = 15 \][/tex]

Here, we have [tex]\(W = 5\)[/tex] and [tex]\(b = 15\)[/tex].

### Step 4: Solve for [tex]\(x\)[/tex]

The equation [tex]\((x - 5)^2 = 15\)[/tex] can be solved by taking the square root on both sides:
[tex]\[ x - 5 = \pm \sqrt{15} \][/tex]

So, the solutions are:
[tex]\[ x = 5 + \sqrt{15} \][/tex]
[tex]\[ x = 5 - \sqrt{15} \][/tex]

Thus, the solutions to the equation are:
[tex]\[ x = 5 \pm \sqrt{15} \][/tex]

### Step 5: Choose the correct answer

The correct answer from the given options is:
(B) [tex]\(x = 5 \pm \sqrt{15}\)[/tex]