Answer :

To find the determinant of a [tex]\( 2 \times 2 \)[/tex] matrix, we use the formula:
[tex]\[ \text{det}\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = ad - bc \][/tex]
Given the matrix:
[tex]\[ \left[\begin{array}{ll} 6 & -1 \\ 2 & -9 \end{array}\right], \][/tex]
we identify [tex]\( a = 6 \)[/tex], [tex]\( b = -1 \)[/tex], [tex]\( c = 2 \)[/tex], and [tex]\( d = -9 \)[/tex].

Substituting these values into the determinant formula, we get:
[tex]\[ \text{det} = (6 \cdot -9) - (-1 \cdot 2) \][/tex]

Calculate each term separately:
[tex]\[ 6 \cdot -9 = -54 \][/tex]
[tex]\[ -1 \cdot 2 = -2 \][/tex]

Combine these results:
[tex]\[ \text{det} = -54 - (-2) = -54 + 2 = -52 \][/tex]

Therefore, the determinant of the matrix is:
[tex]\[ \text{det} = -52 \][/tex]