Answer :

To find the determinant of the [tex]\( 2 \times 2 \)[/tex] matrix
[tex]\[ \left[\begin{array}{cc} -7 & 1 \\ -5 & 11 \end{array}\right], \][/tex]
we use the formula for the determinant of a [tex]\( 2 \times 2 \)[/tex] matrix. For a general matrix

[tex]\[ \left[\begin{array}{cc} a & b \\ c & d \end{array}\right], \][/tex]

the determinant [tex]\(\det\)[/tex] is given by:

[tex]\[ \det = ad - bc. \][/tex]

In this specific case:
- [tex]\( a = -7 \)[/tex]
- [tex]\( b = 1 \)[/tex]
- [tex]\( c = -5 \)[/tex]
- [tex]\( d = 11 \)[/tex]

Substitute these values into the determinant formula:

[tex]\[ \det = (-7)(11) - (1)(-5). \][/tex]

Now, let's calculate the products:

[tex]\[ (-7)(11) = -77 \][/tex]

and

[tex]\[ (1)(-5) = -5. \][/tex]

Next, combine these results according to the determinant formula:

[tex]\[ \det = -77 - (-5). \][/tex]

Subtracting a negative is the same as adding the positive equivalent, so we get:

[tex]\[ \det = -77 + 5. \][/tex]

Finally, perform the addition:

[tex]\[ \det = -72. \][/tex]

Thus, the determinant of the matrix is:

[tex]\[ -72. \][/tex]