Answer :
To find the determinant of the [tex]\( 2 \times 2 \)[/tex] matrix
[tex]\[ \left[\begin{array}{cc} -7 & 1 \\ -5 & 11 \end{array}\right], \][/tex]
we use the formula for the determinant of a [tex]\( 2 \times 2 \)[/tex] matrix. For a general matrix
[tex]\[ \left[\begin{array}{cc} a & b \\ c & d \end{array}\right], \][/tex]
the determinant [tex]\(\det\)[/tex] is given by:
[tex]\[ \det = ad - bc. \][/tex]
In this specific case:
- [tex]\( a = -7 \)[/tex]
- [tex]\( b = 1 \)[/tex]
- [tex]\( c = -5 \)[/tex]
- [tex]\( d = 11 \)[/tex]
Substitute these values into the determinant formula:
[tex]\[ \det = (-7)(11) - (1)(-5). \][/tex]
Now, let's calculate the products:
[tex]\[ (-7)(11) = -77 \][/tex]
and
[tex]\[ (1)(-5) = -5. \][/tex]
Next, combine these results according to the determinant formula:
[tex]\[ \det = -77 - (-5). \][/tex]
Subtracting a negative is the same as adding the positive equivalent, so we get:
[tex]\[ \det = -77 + 5. \][/tex]
Finally, perform the addition:
[tex]\[ \det = -72. \][/tex]
Thus, the determinant of the matrix is:
[tex]\[ -72. \][/tex]
[tex]\[ \left[\begin{array}{cc} -7 & 1 \\ -5 & 11 \end{array}\right], \][/tex]
we use the formula for the determinant of a [tex]\( 2 \times 2 \)[/tex] matrix. For a general matrix
[tex]\[ \left[\begin{array}{cc} a & b \\ c & d \end{array}\right], \][/tex]
the determinant [tex]\(\det\)[/tex] is given by:
[tex]\[ \det = ad - bc. \][/tex]
In this specific case:
- [tex]\( a = -7 \)[/tex]
- [tex]\( b = 1 \)[/tex]
- [tex]\( c = -5 \)[/tex]
- [tex]\( d = 11 \)[/tex]
Substitute these values into the determinant formula:
[tex]\[ \det = (-7)(11) - (1)(-5). \][/tex]
Now, let's calculate the products:
[tex]\[ (-7)(11) = -77 \][/tex]
and
[tex]\[ (1)(-5) = -5. \][/tex]
Next, combine these results according to the determinant formula:
[tex]\[ \det = -77 - (-5). \][/tex]
Subtracting a negative is the same as adding the positive equivalent, so we get:
[tex]\[ \det = -77 + 5. \][/tex]
Finally, perform the addition:
[tex]\[ \det = -72. \][/tex]
Thus, the determinant of the matrix is:
[tex]\[ -72. \][/tex]