The Rocket Club is planning to launch a pair of model rockets. To build the rocket, the club needs a rocket body paired with an engine. The table lists the mass of three possible rocket bodies and the force generated by three possible engines.

\begin{tabular}{|c|c|c|c|}
\hline
Body & Mass (kg) & Engine & Force (N) \\
\hline
1 & 0.500 & 1 & 25 \\
\hline
2 & 1.5 & 2 & 20 \\
\hline
3 & 0.750 & 3 & 30 \\
\hline
\end{tabular}

Based on Newton's laws of motion, which combination of rocket bodies and engines will result in the acceleration of [tex]$40 \, m/s^2$[/tex] at the start of the launch?

A. Body 3 + Engine 1
B. Body 2 + Engine 2
C. Body 1 + Engine 2
D. Body 1 + Engine 1



Answer :

To find which combinations of rocket bodies and engines will result in an acceleration of [tex]\( 40 \, m/s² \)[/tex], we must use Newton's second law of motion which states [tex]\( F = ma \)[/tex]. Rearranging this equation to solve for acceleration [tex]\( a \)[/tex], we get:

[tex]\[ a = \frac{F}{m} \][/tex]

We will calculate the acceleration for each combination of rocket bodies and engines and find which one results in an acceleration of [tex]\( 40 \, m/s² \)[/tex].

1. Body 1 + Engine 1
- Mass ([tex]\( m \)[/tex]) = 0.500 kg
- Force ([tex]\( F \)[/tex]) = 25 N

[tex]\[ a = \frac{25 \, \text{N}}{0.500 \, \text{kg}} = 50 \, m/s² \][/tex]

2. Body 2 + Engine 2
- Mass ([tex]\( m \)[/tex]) = 1.5 kg
- Force ([tex]\( F \)[/tex]) = 20 N

[tex]\[ a = \frac{20 \, \text{N}}{1.5 \, \text{kg}} = 13.33 \, m/s² \][/tex]

3. Body 3 + Engine 3
- Mass ([tex]\( m \)[/tex]) = 0.750 kg
- Force ([tex]\( F \)[/tex]) = 30 N

[tex]\[ a = \frac{30 \, \text{N}}{0.750 \, \text{kg}} = 40 \, m/s² \][/tex]

4. Body 1 + Engine 2
- Mass ([tex]\( m \)[/tex]) = 0.500 kg
- Force ([tex]\( F \)[/tex]) = 20 N

[tex]\[ a = \frac{20 \, \text{N}}{0.500 \, \text{kg}} = 40 \, m/s² \][/tex]

5. Body 2 + Engine 1
- Mass ([tex]\( m \)[/tex]) = 1.5 kg
- Force ([tex]\( F \)[/tex]) = 25 N

[tex]\[ a = \frac{25 \, \text{N}}{1.5 \, \text{kg}} = 16.67 \, m/s² \][/tex]

6. Body 3 + Engine 1
- Mass ([tex]\( m \)[/tex]) = 0.750 kg
- Force ([tex]\( F \)[/tex]) = 25 N

[tex]\[ a = \frac{25 \, \text{N}}{0.750 \, \text{kg}} = 33.33 \, m/s² \][/tex]

7. Body 1 + Engine 3
- Mass ([tex]\( m \)[/tex]) = 0.500 kg
- Force ([tex]\( F \)[/tex]) = 30 N

[tex]\[ a = \frac{30 \, \text{N}}{0.500 \, \text{kg}} = 60 \, m/s² \][/tex]

8. Body 2 + Engine 3
- Mass ([tex]\( m \)[/tex]) = 1.5 kg
- Force ([tex]\( F \)[/tex]) = 30 N

[tex]\[ a = \frac{30 \, \text{N}}{1.5 \, \text{kg}} = 20 \, m/s² \][/tex]

9. Body 3 + Engine 2
- Mass ([tex]\( m \)[/tex]) = 0.750 kg
- Force ([tex]\( F \)[/tex]) = 20 N

[tex]\[ a = \frac{20 \, \text{N}}{0.750 \, \text{kg}} = 26.67 \, m/s² \][/tex]

From these calculations, we find that the combinations resulting in an acceleration of [tex]\( 40 \, m/s² \)[/tex] are:

- Body 1 + Engine 2
- Body 3 + Engine 3

Therefore, the combinations that will achieve the required acceleration are [tex]\( \boxed{\text{Body 1 + Engine 2 and Body 3 + Engine 3}} \)[/tex].