Answered

Given the equation:

[tex]\[ 14j + 5k = m \][/tex]

Which equation correctly expresses [tex]\( k \)[/tex] in terms of [tex]\( j \)[/tex] and [tex]\( m \)[/tex]?

A. [tex]\( k = \frac{m - 14j}{5} \)[/tex]

B. [tex]\( k = \frac{1}{5}m - 14j \)[/tex]

C. [tex]\( k = \frac{14j - m}{5} \)[/tex]

D. [tex]\( k = 5m - 14j \)[/tex]



Answer :

To solve for [tex]\( k \)[/tex] in terms of [tex]\( j \)[/tex] and [tex]\( m \)[/tex] from the given equation:
[tex]\[ 14j + 5k = m \][/tex]

Follow these steps:

1. Isolate the term containing [tex]\( k \)[/tex]:
Start by getting the [tex]\( 5k \)[/tex] term by itself on one side of the equation.
[tex]\[ 5k = m - 14j \][/tex]

2. Solve for [tex]\( k \)[/tex]:
To isolate [tex]\( k \)[/tex], divide both sides of the equation by 5.
[tex]\[ k = \frac{m - 14j}{5} \][/tex]

Now, let's check the options provided:

- (A) [tex]\( k = \frac{m - 14j}{5} \)[/tex]
- (B) [tex]\( k = \frac{1}{5} m - 14j \)[/tex]
- (C) [tex]\( k = \frac{14j - m}{5} \)[/tex]
- (D) [tex]\( k = 5m - 14j \)[/tex]

Given the solution steps we followed, the correct equation that expresses [tex]\( k \)[/tex] in terms of [tex]\( j \)[/tex] and [tex]\( m \)[/tex] is:

[tex]\[ \boxed{k = \frac{m - 14j}{5}} \][/tex]

So, the correct answer is (A) [tex]\( k = \frac{m - 14j}{5} \)[/tex].