Answer :

To find the determinant of the given [tex]\(2 \times 2\)[/tex] matrix:
[tex]\[ \begin{pmatrix} 11 & -10 \\ 12 & 6 \end{pmatrix} \][/tex]

we can use the formula for the determinant of a 2x2 matrix [tex]\(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\)[/tex], which is given by:
[tex]\[ \text{Determinant} = ad - bc \][/tex]

For our specific matrix:
[tex]\[ a = 11, \quad b = -10, \quad c = 12, \quad d = 6 \][/tex]

Substitute the values into the formula:
[tex]\[ \text{Determinant} = (11 \cdot 6) - (-10 \cdot 12) \][/tex]

Simplify the multiplication inside the expression:
[tex]\[ \text{Determinant} = (66) - (-120) \][/tex]

Since subtracting a negative is the same as adding its absolute value:
[tex]\[ \text{Determinant} = 66 + 120 \][/tex]

Add the two terms:
[tex]\[ \text{Determinant} = 186 \][/tex]

Thus, the determinant of the matrix is:
[tex]\[ 186 \][/tex]