For each value of [tex]w[/tex], determine whether it is a solution to [tex]18=3(w-2)[/tex].

\begin{tabular}{|c|c|c|}
\hline
\multirow{2}{*}{[tex]$w$[/tex]} & \multicolumn{2}{|c|}{Is it a solution?} \\
\cline{2-3}
& Yes & No \\
\hline
-10 & [tex]$\bigcirc$[/tex] & [tex]$\bigcirc$[/tex] \\
\hline
6 & [tex]$\bigcirc$[/tex] & [tex]$\bigcirc$[/tex] \\
\hline
1 & [tex]$\bigcirc$[/tex] & [tex]$\bigcirc$[/tex] \\
\hline
-2 & [tex]$\bigcirc$[/tex] & [tex]$\bigcirc$[/tex] \\
\hline
\end{tabular}



Answer :

To determine whether each given value of [tex]\( w \)[/tex] is a solution to the equation [tex]\( 18 = 3(w - 2) \)[/tex], we need to substitute each value of [tex]\( w \)[/tex] into the equation and check if it results in a true statement. We'll evaluate this for each value provided: -10, 6, 1, and -2.

1. For [tex]\( w = -10 \)[/tex]:
[tex]\[ 18 = 3(-10 - 2) \][/tex]
Calculate inside the parentheses first:
[tex]\[ -10 - 2 = -12 \][/tex]
Then multiply by 3:
[tex]\[ 3(-12) = -36 \][/tex]
The equation becomes:
[tex]\[ 18 = -36 \][/tex]
This is not true, so [tex]\( w = -10 \)[/tex] is not a solution.

2. For [tex]\( w = 6 \)[/tex]:
[tex]\[ 18 = 3(6 - 2) \][/tex]
Calculate inside the parentheses first:
[tex]\[ 6 - 2 = 4 \][/tex]
Then multiply by 3:
[tex]\[ 3(4) = 12 \][/tex]
The equation becomes:
[tex]\[ 18 = 12 \][/tex]
This is not true, so [tex]\( w = 6 \)[/tex] is not a solution.

3. For [tex]\( w = 1 \)[/tex]:
[tex]\[ 18 = 3(1 - 2) \][/tex]
Calculate inside the parentheses first:
[tex]\[ 1 - 2 = -1 \][/tex]
Then multiply by 3:
[tex]\[ 3(-1) = -3 \][/tex]
The equation becomes:
[tex]\[ 18 = -3 \][/tex]
This is not true, so [tex]\( w = 1 \)[/tex] is not a solution.

4. For [tex]\( w = -2 \)[/tex]:
[tex]\[ 18 = 3(-2 - 2) \][/tex]
Calculate inside the parentheses first:
[tex]\[ -2 - 2 = -4 \][/tex]
Then multiply by 3:
[tex]\[ 3(-4) = -12 \][/tex]
The equation becomes:
[tex]\[ 18 = -12 \][/tex]
This is not true, so [tex]\( w = -2 \)[/tex] is not a solution.

Here is the table summarizing the results:

\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{[tex]$w$[/tex]} & \multicolumn{2}{|c|}{Is it a solution?} \\
\cline{2-3} & Yes & No \\
\hline
-10 & & [tex]\(\bigcirc\)[/tex] \\
\hline
6 & & [tex]\(\bigcirc\)[/tex] \\
\hline
1 & & [tex]\(\bigcirc\)[/tex] \\
\hline
-2 & & [tex]\(\bigcirc\)[/tex] \\
\hline
\end{tabular}

Thus, none of the given values for [tex]\( w \)[/tex] is a solution to the equation [tex]\( 18 = 3(w - 2) \)[/tex].