Answer :

To solve the system of linear equations:

[tex]\[ \begin{cases} x + 3y = 8 \\ 2x - y = 9 \end{cases} \][/tex]

we can use the method of determinants, also known as Cramer's rule. Here is the step-by-step solution:

1. Identify the coefficients from the system of equations:
[tex]\[ \begin{cases} a_1 = 1, \quad b_1 = 3, \quad c_1 = 8 \\ a_2 = 2, \quad b_2 = -1, \quad c_2 = 9 \end{cases} \][/tex]

2. Calculate the determinant [tex]\(D\)[/tex] of the system:
[tex]\[ D = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = (1)(-1) - (2)(3) = -1 - 6 = -7 \][/tex]

Since [tex]\(D \neq 0\)[/tex], we know that the system of equations has a unique solution.

3. Calculate the determinant [tex]\(D_x\)[/tex] for the variable [tex]\(x\)[/tex]:
[tex]\[ D_x = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} = (8)(-1) - (9)(3) = -8 - 27 = -35 \][/tex]

4. Calculate the determinant [tex]\(D_y\)[/tex] for the variable [tex]\(y\)[/tex]:
[tex]\[ D_y = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} = (1)(9) - (2)(8) = 9 - 16 = -7 \][/tex]

5. Find the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] using the determinants:
[tex]\[ x = \frac{D_x}{D} = \frac{-35}{-7} = 5 \][/tex]
[tex]\[ y = \frac{D_y}{D} = \frac{-7}{-7} = 1 \][/tex]

So, the solution to the system of equations is:

[tex]\[ x = 5, \quad y = 1 \][/tex]