What is the slope of the line that contains these points?

[tex]\[
\begin{array}{r|r|r|r|r}
x & 5 & 6 & 7 & 8 \\
\hline
y & -3 & -1 & 1 & 3 \\
\end{array}
\][/tex]

Slope: [tex]$\square$[/tex]



Answer :

Let's determine the slope of the line passing through the given points [tex]\((5, -3)\)[/tex], [tex]\((6, -1)\)[/tex], [tex]\((7, 1)\)[/tex], and [tex]\((8, 3)\)[/tex].

The slope formula for a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

First, we choose the points [tex]\((5, -3)\)[/tex] and [tex]\((6, -1)\)[/tex] from the given set. Let [tex]\((x_1, y_1) = (5, -3)\)[/tex] and [tex]\((x_2, y_2) = (6, -1)\)[/tex].

Calculate the differences between the x-coordinates and the y-coordinates:
[tex]\[ x_2 - x_1 = 6 - 5 = 1 \][/tex]
[tex]\[ y_2 - y_1 = -1 - (-3) = -1 + 3 = 2 \][/tex]

Next, we use these differences to find the slope:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2}{1} = 2 \][/tex]

Therefore, the slope of the line that contains the given points is:
[tex]\[ \boxed{2} \][/tex]