Use the law of sines:

1. [tex]$\frac{\sin (A)}{a}=\frac{\sin (B)}{b}$[/tex].

2. Substitute: [tex]$\frac{\sin \left(45^{\circ}\right)}{a}=\frac{\sin \left(77^{\circ}\right)}{8}$[/tex].

3. Cross multiply: [tex]$8 \sin \left(45^{\circ}\right)=a \sin \left(77^{\circ}\right)$[/tex].

4. Solve for [tex]$a$[/tex] and round to the nearest hundredth:
[tex]$
a \approx \square
$[/tex]
[tex]$\square$[/tex]



Answer :

Certainly! Let's solve for the unknown side [tex]\( a \)[/tex] using the Law of Sines. Here is the detailed step-by-step solution:

1. Use the Law of Sines:

[tex]\[ \frac{\sin (A)}{a} = \frac{\sin (B)}{b} \][/tex]

2. Substitute the given values:

[tex]\[ \frac{\sin (45^\circ)}{a} = \frac{\sin (77^\circ)}{8} \][/tex]

3. Cross multiply to solve for [tex]\( a \)[/tex]:

[tex]\[ 8 \sin (45^\circ) = a \sin (77^\circ) \][/tex]

4. Solve for [tex]\( a \)[/tex]:

[tex]\[ a = \frac{8 \sin (45^\circ)}{\sin (77^\circ)} \][/tex]

Given the numerical values we have:

[tex]\[ \sin (45^\circ) \approx 0.7071 \][/tex]
[tex]\[ \sin (77^\circ) \approx 0.9744 \][/tex]

Plugging these values into the equation:

[tex]\[ a = \frac{8 \times 0.7071}{0.9744} \][/tex]

[tex]\[ a \approx \frac{5.6568}{0.9744} \approx 5.8057 \][/tex]

Finally, rounding this to the nearest hundredth:

[tex]\[ a \approx 5.81 \][/tex]

Therefore, the value of [tex]\( a \)[/tex], rounded to the nearest hundredth, is:

[tex]\[ a \approx \boxed{5.81} \][/tex]