Simplify. Express the answers using positive exponents.

[tex]\[
\frac{-2 a^2 b^4}{4 a b^{-8}}, \quad a \neq 0, \quad b \neq 0
\][/tex]

A. [tex]\(-\frac{1}{2} a b^{12}\)[/tex]

B. [tex]\(-\frac{1}{2} a b^{-12}\)[/tex]

C. [tex]\(-\frac{a}{2 b^4}\)[/tex]

D. [tex]\(-\frac{a}{2 b^{-4}}\)[/tex]



Answer :

To simplify the expression [tex]\(\frac{-2 a^2 b^4}{4 a b^{-8}}\)[/tex] and express the answer using positive exponents, follow these steps:

1. Simplify the coefficients:

The coefficients in the numerator and denominator are [tex]\(-2\)[/tex] and [tex]\(4\)[/tex], respectively:
[tex]\[ \frac{-2}{4} = -\frac{1}{2} \][/tex]

2. Simplify the exponents of [tex]\(a\)[/tex]:

The exponents of [tex]\(a\)[/tex] in the numerator and denominator are [tex]\(2\)[/tex] and [tex]\(1\)[/tex], respectively:
[tex]\[ \frac{a^2}{a} = a^{2-1} = a^1 = a \][/tex]

3. Simplify the exponents of [tex]\(b\)[/tex]:

The exponents of [tex]\(b\)[/tex] in the numerator and denominator are [tex]\(4\)[/tex] and [tex]\(-8\)[/tex], respectively:
[tex]\[ \frac{b^4}{b^{-8}} = b^{4 - (-8)} = b^{4+8} = b^{12} \][/tex]

4. Combine all the simplified parts:

Putting it all together, the simplified expression is:
[tex]\[ -\frac{1}{2} a b^{12} \][/tex]

Thus, the simplified expression [tex]\(\frac{-2 a^2 b^4}{4 a b^{-8}}\)[/tex] is:
[tex]\[ -\frac{1}{2} a b^{12} \][/tex]

From the given options, it is clear that:
[tex]\[ -\frac{1}{2} a b^{12} \][/tex]
is the correct and simplified form of the given expression.