Enter the correct answer in the box.

Use the product of powers property to simplify the numeric expression.

[tex]\[ 4^{\frac{1}{3}} \cdot 4^{\frac{1}{5}} = \][/tex]

[tex]\[ \qquad \][/tex]



Answer :

To simplify the expression [tex]\( 4^{\frac{1}{3}} \cdot 4^{\frac{1}{5}} \)[/tex], we can use the product of powers property, which states that [tex]\( a^m \cdot a^n = a^{m+n} \)[/tex].

1. Identify the base and the exponents in the expression:
- The base is [tex]\( 4 \)[/tex].
- The exponents are [tex]\( \frac{1}{3} \)[/tex] and [tex]\( \frac{1}{5} \)[/tex].

2. Using the product of powers property, combine the exponents:
[tex]\[ \frac{1}{3} + \frac{1}{5} \][/tex]

3. To add these fractions, find a common denominator. The common denominator of 3 and 5 is 15:
[tex]\[ \frac{1}{3} = \frac{5}{15} \quad \text{and} \quad \frac{1}{5} = \frac{3}{15} \][/tex]

4. Add the fractions:
[tex]\[ \frac{5}{15} + \frac{3}{15} = \frac{8}{15} \][/tex]

5. Now the expression becomes:
[tex]\[ 4^{\frac{1}{3}} \cdot 4^{\frac{1}{5}} = 4^{\frac{8}{15}} \][/tex]

6. Finally, calculate [tex]\( 4^{\frac{8}{15}} \)[/tex]:
[tex]\[ 4^{\frac{8}{15}} \approx 2.0945882456412535 \][/tex]

Therefore, [tex]\( 4^{\frac{1}{3}} \cdot 4^{\frac{1}{5}} \approx 2.0945882456412535 \)[/tex].