Simplify the expression:

[tex]\[
\left(\frac{10 x^3 y^2}{5 x^{-3} y^4}\right)^{-3}, \quad x \neq 0, \quad y \neq 0
\][/tex]

A. [tex]\(\frac{2 x^{18}}{y^8}\)[/tex]

B. [tex]\(\frac{x^9}{8 y^5}\)[/tex]

C. [tex]\(\frac{2 y^5}{x^9}\)[/tex]

D. [tex]\(\frac{y^6}{8 x^{18}}\)[/tex]



Answer :

To solve [tex]\(\left(\frac{10 x^3 y^2}{5 x^{-3} y^4}\right)^{-3}\)[/tex], let's break it down step-by-step.

1. Simplify the inner expression:
[tex]\[ \frac{10 x^3 y^2}{5 x^{-3} y^4} \][/tex]

Divide the coefficients:
[tex]\[ \frac{10}{5} = 2 \][/tex]

Simplify the exponents of [tex]\(x\)[/tex]:
[tex]\[ \frac{x^3}{x^{-3}} = x^{3 - (-3)} = x^{3 + 3} = x^6 \][/tex]

Simplify the exponents of [tex]\(y\)[/tex]:
[tex]\[ \frac{y^2}{y^4} = y^{2 - 4} = y^{-2} \][/tex]

Combining all simplified parts, we get:
[tex]\[ 2 x^6 y^{-2} \][/tex]

2. Raise the simplified expression to the power of [tex]\(-3\)[/tex]:
[tex]\[ (2 x^6 y^{-2})^{-3} \][/tex]

Apply the exponent to each factor:
[tex]\[ 2^{-3} \cdot (x^6)^{-3} \cdot (y^{-2})^{-3} \][/tex]

Simplify each term:
[tex]\[ 2^{-3} = \frac{1}{2^3} = \frac{1}{8} \][/tex]
[tex]\[ (x^6)^{-3} = x^{6 \cdot (-3)} = x^{-18} \][/tex]
[tex]\[ (y^{-2})^{-3} = y^{-2 \cdot (-3)} = y^6 \][/tex]

3. Combine the simplified terms:
[tex]\[ \frac{1}{8} \cdot x^{-18} \cdot y^6 \][/tex]

Rewrite the expression:
[tex]\[ \frac{y^6}{8 x^{18}} \][/tex]

Therefore, the simplified and final form of the given expression is:
[tex]\[ \frac{y^6}{8 x^{18}} \][/tex]

So, the correct answer is:
[tex]\(\boxed{\frac{y^6}{8 x^{18}}}\)[/tex]