Which expression is equivalent to [tex]\frac{-18 a^{-2} b^5}{-12 a^{-4} b^{-6}}[/tex]? Assume [tex]a \neq 0, b \neq 0[/tex].

A. [tex]\frac{2 a^2 b^{11}}{3}[/tex]
B. [tex]\frac{2 a^2 b^{30}}{3}[/tex]
C. [tex]\frac{3 a^2 b^{11}}{2}[/tex]
D. [tex]\frac{3 a^2 b^{30}}{2}[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\frac{-18 a^{-2} b^5}{-12 a^{-4} b^{-6}}\)[/tex], we'll break the problem into simplifying the coefficients and simplifying the powers of [tex]\(a\)[/tex] and [tex]\(b\)[/tex].

1. Simplify the Coefficients:
[tex]\[ \frac{-18}{-12} \][/tex]
Since both the numerator and the denominator are negative, dividing them will yield a positive result. Thus:
[tex]\[ \frac{-18}{-12} = \frac{18}{12} = \frac{3}{2} \][/tex]

2. Simplify the Powers of [tex]\(a\)[/tex]:
When dividing like bases, we subtract the exponents:
[tex]\[ \frac{a^{-2}}{a^{-4}} = a^{-2 - (-4)} = a^{-2 + 4} = a^2 \][/tex]

3. Simplify the Powers of [tex]\(b\)[/tex]:
Similarly, for [tex]\(b\)[/tex]:
[tex]\[ \frac{b^5}{b^{-6}} = b^{5 - (-6)} = b^{5 + 6} = b^{11} \][/tex]

Now, combining these simplifications we get:
[tex]\[ \frac{3}{2} \cdot a^2 \cdot b^{11} \][/tex]

Thus, the simplified expression is:
[tex]\[ \frac{3 a^2 b^{11}}{2} \][/tex]

Therefore, the expression equivalent to [tex]\(\frac{-18 a^{-2} b^5}{-12 a^{-4} b^{-6}}\)[/tex] is:
[tex]\[ \boxed{\frac{3 a^2 b^{11}}{2}} \][/tex]