If point [tex]$P$[/tex] is [tex]$\frac{4}{7}$[/tex] of the distance from [tex]$M$[/tex] to [tex]$N$[/tex], what ratio does point [tex]$P$[/tex] partition the directed line segment from [tex]$M$[/tex] to [tex]$N$[/tex] into?

A. [tex]$4:1$[/tex]
B. [tex]$4:3$[/tex]
C. [tex]$4:7$[/tex]
D. [tex]$4:10$[/tex]



Answer :

To determine the ratio in which point [tex]\( P \)[/tex] partitions the directed line segment from [tex]\( M \)[/tex] to [tex]\( N \)[/tex] when [tex]\( P \)[/tex] is [tex]\(\frac{4}{7}\)[/tex] of the distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex], we can follow these steps:

1. Understanding the given fraction: Point [tex]\( P \)[/tex] is [tex]\(\frac{4}{7}\)[/tex] of the distance from point [tex]\( M \)[/tex] to point [tex]\( N \)[/tex]. This means that [tex]\( P \)[/tex] divides the segment [tex]\( M \)[/tex] to [tex]\( N \)[/tex] such that [tex]\( P \)[/tex] is closer to [tex]\( M \)[/tex].

2. Calculate the remaining distance: If [tex]\( P \)[/tex] is [tex]\(\frac{4}{7}\)[/tex] of the distance from [tex]\( M \)[/tex] to [tex]\( N \)[/tex], the remaining distance from [tex]\( P \)[/tex] to [tex]\( N \)[/tex] is:
[tex]\[ 1 - \frac{4}{7} = \frac{3}{7} \][/tex]

3. Setting up the ratio: The ratio of the segment from [tex]\( P \)[/tex] to [tex]\( N \)[/tex] compared to the segment from [tex]\( M \)[/tex] to [tex]\( P \)[/tex] is given by:
[tex]\[ \frac{\frac{4}{7}}{\frac{3}{7}} \][/tex]

4. Simplifying the ratio:
[tex]\[ \frac{\frac{4}{7}}{\frac{3}{7}} = \frac{4}{3} \][/tex]

So, point [tex]\( P \)[/tex] partitions the segment [tex]\( M \)[/tex] to [tex]\( N \)[/tex] into a ratio of [tex]\( 4:3 \)[/tex].

Therefore, the point [tex]\( P \)[/tex] divides the directed line segment from [tex]\( M \)[/tex] to [tex]\( N \)[/tex] in the ratio [tex]\( 4:3 \)[/tex].

The correct answer is:
[tex]\[ \boxed{4:3} \][/tex]