Study the example shown below. Which expression should replace the word "numerator" in the work shown?

[tex]\[
\begin{array}{l}
\frac{2x - 8}{x^2 - 7x + 10} - \frac{x - 3}{x^2 - 7x + 10} \\
= \frac{2x - 8 - (x - 3)}{x^2 - 7x + 10}
\end{array}
\][/tex]

[tex]\[
\frac{\text{numerator}}{(x - 2)(x - 5)}
\][/tex]

A. [tex]\(x - 11\)[/tex]

B. [tex]\(x - 5\)[/tex]

C. [tex]\(3x - 11\)[/tex]

D. [tex]\(3x - 5\)[/tex]



Answer :

To find the correct expression that should replace the word "numerator" in the provided mathematical work, let's carefully follow the steps and simplify the given expression:

Given the expression:
[tex]\[ \frac{2x - 8}{x^2 - 7x + 10} - \frac{x - 3}{x^2 - 7x + 10} \][/tex]

Since the denominators are the same, we can combine the fractions by subtracting the numerators:
[tex]\[ \frac{(2x - 8) - (x - 3)}{x^2 - 7x + 10} \][/tex]

Next, distribute the negative sign and simplify the numerator:
[tex]\[ (2x - 8) - (x - 3) = 2x - 8 - x + 3 \][/tex]

Combine like terms in the numerator:
[tex]\[ 2x - x - 8 + 3 = x - 5 \][/tex]

So the simplified expression becomes:
[tex]\[ \frac{x - 5}{x^2 - 7x + 10} \][/tex]

We also know that [tex]\( x^2 - 7x + 10 \)[/tex] can be factored as [tex]\((x-2)(x-5)\)[/tex]. With the numerator simplified, the final fraction is:
[tex]\[ \frac{x - 5}{(x-2)(x-5)} \][/tex]

The expression that should replace the word "numerator" in the final simplified fraction is:
[tex]\[ x - 5 \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{x - 5} \][/tex]