[tex]$
-2x + 3y = 6
$[/tex]

In the [tex]$xy$[/tex]-plane, the graph of which of the following equations is perpendicular to the graph of the equation above?

A) [tex]$3x + 2y = 6$[/tex]

B) [tex]$3x + 4y = 6$[/tex]

C) [tex]$2x + 4y = 6$[/tex]

D) [tex]$2x + 6y = 3$[/tex]



Answer :

To determine which of the given equations is perpendicular to the graph of the equation [tex]\(-2x + 3y = 6\)[/tex], we need to follow these steps:

1. Find the slope of the given equation:
We start by rewriting [tex]\(-2x + 3y = 6\)[/tex] in the slope-intercept form of [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] represents the slope.

[tex]\[ -2x + 3y = 6 \][/tex]

Add [tex]\(2x\)[/tex] to both sides:

[tex]\[ 3y = 2x + 6 \][/tex]

Divide both sides by 3:

[tex]\[ y = \frac{2}{3}x + 2 \][/tex]

So, the slope [tex]\(m\)[/tex] of the given line is [tex]\(\frac{2}{3}\)[/tex].

2. Determine the slope of the perpendicular line:
Lines are perpendicular if the product of their slopes is [tex]\(-1\)[/tex]. Therefore, if one line has a slope [tex]\(m\)[/tex], the perpendicular line will have a slope of [tex]\(-\frac{1}{m}\)[/tex].

For our slope, [tex]\(\frac{2}{3}\)[/tex], the perpendicular slope would be:

[tex]\[ -\frac{1}{\left(\frac{2}{3}\right)} = -\frac{3}{2} \][/tex]

3. Compare the slopes of the given options:

- Option A: [tex]\(3x + 2y = 6\)[/tex]

Solve for [tex]\(y\)[/tex]:

[tex]\[ 2y = -3x + 6 \][/tex]

Divide by 2:

[tex]\[ y = -\frac{3}{2}x + 3 \][/tex]

The slope here is [tex]\(-\frac{3}{2}\)[/tex].

- Option B: [tex]\(3x + 4y = 6\)[/tex]

Solve for [tex]\(y\)[/tex]:

[tex]\[ 4y = -3x + 6 \][/tex]

Divide by 4:

[tex]\[ y = -\frac{3}{4}x + \frac{3}{2} \][/tex]

The slope here is [tex]\(-\frac{3}{4}\)[/tex].

- Option C: [tex]\(2x + 4y = 6\)[/tex]

Solve for [tex]\(y\)[/tex]:

[tex]\[ 4y = -2x + 6 \][/tex]

Divide by 4:

[tex]\[ y = -\frac{1}{2}x + \frac{3}{2} \][/tex]

The slope here is [tex]\(-\frac{1}{2}\)[/tex].

- Option D: [tex]\(2x + 6y = 3\)[/tex]

Solve for [tex]\(y\)[/tex]:

[tex]\[ 6y = -2x + 3 \][/tex]

Divide by 6:

[tex]\[ y = -\frac{1}{3}x + \frac{1}{2} \][/tex]

The slope here is [tex]\(-\frac{1}{3}\)[/tex].

4. Identify the perpendicular line:

The only line whose slope is [tex]\(-\frac{3}{2}\)[/tex], which is the negative reciprocal of [tex]\(\frac{2}{3}\)[/tex], is the line given in Option A.

Therefore, the correct choice is:

Option A: [tex]\(3x + 2y = 6\)[/tex]