Sheila is dividing [tex]$x^4 - 4x^3 + 4x^2 - 6x + 5$[/tex] by [tex]$x - 1$[/tex] using a division table.

\begin{tabular}{|l|c|c|c|c|c|}
\hline
& & \multicolumn{4}{|c|}{Quotient} \\
\hline
\multirow{4}{*}{Divisor} & & [tex]$x^3$[/tex] & [tex]$-3x^2$[/tex] & [tex]$+x$[/tex] & [tex]$-5$[/tex] \\
\cline{2-6}
& [tex]$x$[/tex] & [tex]$x^4$[/tex] & [tex]$-4x^3$[/tex] & [tex]$4x^2$[/tex] & [tex]$A$[/tex] \\
\cline{2-6}
& [tex]$-1$[/tex] & [tex]$-x^3$[/tex] & [tex]$4x^2$[/tex] & [tex]$B$[/tex] & [tex]$C$[/tex] \\
\hline
\end{tabular}

What are the missing values in the table?

A. [tex]$A = -5x ; B = 1x ; C = 5$[/tex]
B. [tex]$A = -5x ; B = -1x ; C = 5$[/tex]
C. [tex]$A = 5x ; B = -1x ; C = 5$[/tex]
D. [tex]$A = 5x ; B = 1x ; C = 5$[/tex]



Answer :

To determine the missing values in the table from Shelia's polynomial division, let's examine how the division process unfolds.

1. Looking at the quotient's coefficients:
- The quotient given in the table is [tex]\( x^3 - 3x^2 + x - 5 \)[/tex].

2. Focusing on the division table:
- The first row under "Divisor" shows the division process with the term [tex]\( x \)[/tex] and its multiplication into all terms of the quotient.
- Similarly, the second row shows the result of multiplying the divisor by [tex]\(-1\)[/tex] through all the quotient terms.

Given the table format and the results found earlier ([tex]\((-5, 3, 5)\)[/tex]):

3. Identifying value calculations:
- The missing values in the table correspond to coefficients gathered from the polynomial division carried out.

### Step-by-step determination of coefficients:

[tex]\(\mathbf{A}\)[/tex] Calculation:
- From the first row, [tex]\(x-1 = \divisor\)[/tex], we multiply [tex]\(-5\)[/tex] (constant term in the quotient) and [tex]\(x\)[/tex] from the divisor:
- [tex]\(-5 \cdot x = -5x\)[/tex].
So, [tex]\(A = -5\)[/tex].

[tex]\(\mathbf{B}\)[/tex] Calculation:
- In the second row, the term from the table under [tex]\(B\)[/tex], multiplying the second term (-[tex]\((\divisor\)[/tex] term)) from the quotient coefficient ([tex]\(-3x^2\)[/tex]) by [tex]\(-1\)[/tex]):
- [tex]\((-1 \cdot -3x^2) = 3x^2\)[/tex].
So, [tex]\(B = 3x\)[/tex].

[tex]\(\mathbf{C}\)[/tex] Calculation:
- From the constant multiplication with [tex]\(-1\)[/tex] and quotient's last term ([tex]\(-5\)[/tex]):
- [tex]\((-1) \cdot (-5) = 5\)[/tex].
So, [tex]\(C = 5\)[/tex].

### Values:
- [tex]\(A = -5\)[/tex]
- [tex]\(B = 3\)[/tex]
- [tex]\(C = 5\)[/tex]

Thus, we can see which answer given matches these values. The correct choice is:

[tex]\(\boxed{-5, 3, 5}\)[/tex].