Enter the values for [tex]$a$[/tex] and [tex]$b$[/tex] that complete the sum:

[tex]\[
\frac{3}{x} + \frac{5}{x^2} = \frac{a x + b}{x^2}
\][/tex]

[tex]\[
a = \square
\][/tex]

[tex]\[
b = \square
\][/tex]



Answer :

To find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that complete the sum:

[tex]\[ \frac{3}{x} + \frac{5}{x^2} = \frac{a x + b}{x^2}, \][/tex]

we need to follow a step-by-step process of combining the fractions on the left side of the equation. Here's the detailed process:

1. Write down the given fractions and find a common denominator:

The common denominator for [tex]\(\frac{3}{x}\)[/tex] and [tex]\(\frac{5}{x^2}\)[/tex] is [tex]\(x^2\)[/tex].

2. Express each fraction with the common denominator:

[tex]\[ \frac{3}{x} = \frac{3 \cdot x}{x^2} = \frac{3x}{x^2}, \][/tex]

and

[tex]\[ \frac{5}{x^2} = \frac{5}{x^2}. \][/tex]

3. Combine the fractions into a single fraction:

Add the numerators together while keeping the common denominator:

[tex]\[ \frac{3x}{x^2} + \frac{5}{x^2} = \frac{3x + 5}{x^2}. \][/tex]

4. Identify the numerator and the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:

By comparing the combined fraction [tex]\(\frac{3x + 5}{x^2}\)[/tex] with the form [tex]\(\frac{a x + b}{x^2}\)[/tex], we can directly see that:

[tex]\[ 3x + 5 = a x + b. \][/tex]

5. Match the coefficients:

From the equation above, we match the coefficients respectively. The coefficient of [tex]\(x\)[/tex] gives us the value of [tex]\(a\)[/tex] and the constant term gives us the value of [tex]\(b\)[/tex]:

- The coefficient of [tex]\(x\)[/tex] is 3, so [tex]\(a = 3\)[/tex].
- The constant term is 5, so [tex]\(b = 5\)[/tex].

Therefore, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:

[tex]\[ \begin{array}{l} a = 3, \\ b = 5. \end{array} \][/tex]

So the completed sum is:

[tex]\[ \frac{3}{x} + \frac{5}{x^2} = \frac{3x + 5}{x^2}. \][/tex]