Enter the values for [tex]\( m \)[/tex], [tex]\( n \)[/tex], and [tex]\( p \)[/tex] that complete the difference:

[tex]\[
\frac{7}{x} - \frac{3}{2} = \frac{n - m x}{p x}
\][/tex]

[tex]\[
m = \square
\][/tex]

[tex]\[
n = \square
\][/tex]

[tex]\[
p = \square
\][/tex]



Answer :

To solve the equation [tex]\(\frac{7}{x} - \frac{3}{2} = \frac{n - mx}{px}\)[/tex] and determine the values for [tex]\(m\)[/tex], [tex]\(n\)[/tex], and [tex]\(p\)[/tex], we need to express both terms on the left-hand side with a common denominator. Here's a step-by-step solution:

1. Start with the given equation:
[tex]\[ \frac{7}{x} - \frac{3}{2} = \frac{n - mx}{px} \][/tex]

2. Identify a common denominator for the left-hand side of the equation. The common denominator for [tex]\(x\)[/tex] and 2 is [tex]\(2x\)[/tex]:
[tex]\[ \frac{7}{x} - \frac{3}{2} = \frac{7 \cdot 2}{2x} - \frac{3 \cdot x}{2x} \][/tex]

3. Rewrite each term with the common denominator [tex]\(2x\)[/tex]:
[tex]\[ \frac{14}{2x} - \frac{3x}{2x} = \frac{14 - 3x}{2x} \][/tex]

4. Combine the terms on the left-hand side:
[tex]\[ \frac{14 - 3x}{2x} \][/tex]

5. Compare the left-hand side of the equation with the right-hand side:
[tex]\[ \frac{14 - 3x}{2x} = \frac{n - mx}{px} \][/tex]

6. From the comparison, it is clear that:
[tex]\[ n = 14, \quad m = 3, \quad p = 2 \][/tex]

Thus, the values for [tex]\(m\)[/tex], [tex]\(n\)[/tex], and [tex]\(p\)[/tex] that complete the difference are:
[tex]\[ m = 3 \][/tex]
[tex]\[ n = 14 \][/tex]
[tex]\[ p = 2 \][/tex]