Complete the equation:

[tex]\[ x^2 - 14x + \ldots = (\ldots)^2 \][/tex]

A. [tex]\[ -14 ; x - 14 \][/tex]

B. [tex]\[ 49 ; x - 7 \][/tex]

C. [tex]\[ 49 ; x + 7 \][/tex]

D. [tex]\[ -14 ; x + 14 \][/tex]



Answer :

To complete the equation [tex]\( x^2 - 14x + \ldots = (\ldots)^2 \)[/tex], let's go through the process step by step.

The goal is to transform the quadratic expression into a perfect square trinomial and then express it in the form [tex]\((x - a)^2\)[/tex] or [tex]\((x + a)^2\)[/tex].

1. Take the coefficient of [tex]\(x\)[/tex], which is -14, and divide it by 2:
[tex]\[ \frac{-14}{2} = -7 \][/tex]

2. Square the result obtained from step 1:
[tex]\[ (-7)^2 = 49 \][/tex]

3. Add this squared result to the original quadratic equation:
[tex]\[ x^2 - 14x + 49 \][/tex]

4. Now, express the trinomial [tex]\(x^2 - 14x + 49\)[/tex] as a square of a binomial:
[tex]\[ x^2 - 14x + 49 = (x - 7)^2 \][/tex]

Thus, the equation [tex]\( x^2 - 14x + \ldots \)[/tex] is completed as:
[tex]\[ x^2 - 14x + 49 = (x - 7)^2 \][/tex]

Therefore, matching with the given options, we get:

- The term to be added is [tex]\(49\)[/tex]
- The binomial squared is [tex]\((x - 7)^2\)[/tex]

The correct choice is:

B. [tex]\(49 ; x-7\)[/tex]