Enter the values for the highlighted variables to complete the steps to find the sum:

[tex]\[
\begin{aligned}
\frac{3x}{2x-6}+\frac{9}{6-2x} &= \frac{3x}{2x-6}+\frac{9}{a(2x-6)} \\
&= \frac{3x}{2x-6}+\frac{b}{2x-6} \\
&= \frac{3x-c}{2x-6} \\
&= \frac{d(x-e)}{f(x-3)} \\
&= g
\end{aligned}
\][/tex]

[tex]\[
\begin{aligned}
a &= \square \\
b &= \square \\
c &= \square \\
d &= \square \\
e &= \square \\
f &= \square \\
g &= \square
\end{aligned}
\][/tex]



Answer :

To solve this problem step-by-step, we have:

1. Examine the initial equation:
[tex]\[ \frac{3 x}{2 x-6}+\frac{9}{6-2 x} \][/tex]

2. Notice that [tex]\(6 - 2x = -(2x - 6)\)[/tex], so we can rewrite the second fraction:
[tex]\[ \frac{3 x}{2 x-6}+\frac{9}{a(2 x-6)} \][/tex]

3. Identifying [tex]\(a\)[/tex]:
Since [tex]\((6 - 2x) = -(2x - 6)\)[/tex], it follows that [tex]\(a = -1\)[/tex]:
[tex]\[ a = -1 \][/tex]

4. Updating the expression, we have:
[tex]\[ \frac{3 x}{2 x-6}+\frac{9}{-1(2 x-6)} \][/tex]

5. Simplify the second fraction by multiplying the numerator and denominator by -1:
[tex]\[ \frac{3 x}{2 x-6}+\frac{9}{-(2 x-6)} = \frac{3 x}{2 x-6} + \frac{9}{-1(2 x-6)} = \frac{3 x}{2 x-6} + \frac{-9}{2 x-6} \][/tex]

6. Combining the fractions:
[tex]\[ \frac{3 x}{2 x-6}+\frac{-9}{2 x-6} = \frac{3 x - 9}{2 x-6} \][/tex]

7. Identifying [tex]\(b\)[/tex] and [tex]\(c\)[/tex]:
Since [tex]\(3x - 9\)[/tex] can be rewritten as [tex]\(3(x - 3)\)[/tex]:
[tex]\[ b = 9 \quad \text{and} \quad c = 3 \][/tex]

8. Further simplifying the numerator:
[tex]\[ \frac{3(x - 3)}{2 x-6} \][/tex]

9. Factor [tex]\(d\)[/tex], [tex]\(e\)[/tex], and [tex]\(f\)[/tex]:
[tex]\[ d = -3 \quad e = -1 \quad f = -2 \][/tex]

10. Lastly, simplify the fractions:
[tex]\[ \frac{-3(x - -1)}{-2(x-3)} = 1 \][/tex]

11. Identifying [tex]\(g\)[/tex]:
[tex]\[ g = 1.0 \][/tex]

Therefore, the values are:
[tex]\[ a = -1, \quad b = 9, \quad c = 3, \quad d = -3, \quad e = -1, \quad f = -2, \quad g = 1.0 \][/tex]