Complete the equation:

[tex]\[ x^2 + 10x + \ldots = (\ldots)^2 \][/tex]

A. [tex]\[ 10 ; x + 10 \][/tex]

B. [tex]\[ 25 ; x - 5 \][/tex]

C. [tex]\[ 10 ; x - 10 \][/tex]

D. [tex]\[ 25 ; x + 5 \][/tex]



Answer :

To complete the given equation:
[tex]\[ x^2 + 10x + \ldots = (\ldots)^2 \][/tex]

we need to transform the left-hand side of the equation into a perfect square trinomial. Here’s how we can do it step-by-step:

1. Start with the expression [tex]\(x^2 + 10x\)[/tex].

2. Identify the coefficient of [tex]\(x\)[/tex], which in this case is [tex]\(10\)[/tex].

3. Take half of the coefficient of [tex]\(x\)[/tex]:
[tex]\[ \frac{10}{2} = 5 \][/tex]

4. Square that value to complete the square:
[tex]\[ 5^2 = 25 \][/tex]

5. Add this squared value to the original expression to form the perfect square trinomial:
[tex]\[ x^2 + 10x + 25 \][/tex]

6. Now express this trinomial as a square of a binomial:
[tex]\[ x^2 + 10x + 25 = (x + 5)^2 \][/tex]

Thus, the completed equation is:
[tex]\[ x^2 + 10x + 25 = (x + 5)^2 \][/tex]

So, the correct answer is:
[tex]\[ D. \quad 25 ; x+5 \][/tex]