Solve the following exponential equation. Express your answer as both an exact expression and a decimal approximation rounded to two decimal places. Use [tex]e = 2.71828182845905[/tex].

[tex]
e^{3x - 5} = 7^{\frac{2x}{3}}
[/tex]

If you wish to enter [tex]\log[/tex] or [tex]\ln[/tex], you must use the keypad.



Answer :

To solve the exponential equation [tex]\( e^{3x-5} = 7^{\frac{2x}{3}} \)[/tex], we'll follow these steps:

1. Take the natural logarithm of both sides:

[tex]\[ \ln\left(e^{3x-5}\right) = \ln\left(7^{\frac{2x}{3}}\right) \][/tex]

2. Apply the properties of logarithms:

For any [tex]\( a > 0 \)[/tex] and [tex]\( b \)[/tex] being real numbers:

[tex]\[ \ln\left(e^a\right) = a \quad \text{and} \quad \ln\left(b^c\right) = c \ln(b) \][/tex]

Using these properties, we can simplify both sides of the equation:

[tex]\[ 3x - 5 = \frac{2x}{3} \ln(7) \][/tex]

3. Isolate [tex]\( x \)[/tex] on one side of the equation:

To clear the fraction, multiply every term by 3:

[tex]\[ 3(3x - 5) = 3 \left(\frac{2x}{3} \ln(7)\right) \][/tex]

Simplify:

[tex]\[ 9x - 15 = 2x \ln(7) \][/tex]

4. Collect all [tex]\( x \)[/tex]-terms on one side of the equation:

[tex]\[ 9x - 2x \ln(7) = 15 \][/tex]

5. Factor out [tex]\( x \)[/tex]:

[tex]\[ x(9 - 2 \ln(7)) = 15 \][/tex]

6. Solve for [tex]\( x \)[/tex]:

[tex]\[ x = \frac{15}{9 - 2 \ln(7)} \][/tex]

This is the exact expression for [tex]\( x \)[/tex].

7. Calculate the decimal approximation:

First, compute [tex]\(\ln(7)\)[/tex]. Given [tex]\( e \approx 2.71828182845905\)[/tex], we can use a calculator to find:

[tex]\[ \ln(7) \approx 1.94591014905531 \][/tex]

Substitute this value into the expression:

[tex]\[ x = \frac{15}{9 - 2 \cdot 1.94591014905531} \][/tex]

Simplify the denominator:

[tex]\[ x = \frac{15}{9 - 3.89182029811062} = \frac{15}{5.10817970188938} \][/tex]

Finally, perform the division:

[tex]\[ x \approx 2.9355 \][/tex]

Rounding to two decimal places:

[tex]\[ x \approx 2.94 \][/tex]

Therefore, the exact solution is:

[tex]\[ x = \frac{15}{9 - 2 \ln(7)} \][/tex]

And the decimal approximation rounded to two decimal places is:

[tex]\[ x \approx 2.94 \][/tex]