To solve for [tex]\( h(6t - 3) \)[/tex] given that [tex]\( h(x) = x^2 \)[/tex]:
1. Identify the function [tex]\( h(x) \)[/tex]:
[tex]\( h(x) = x^2 \)[/tex]
2. Substitute [tex]\( x \)[/tex] with [tex]\( 6t - 3 \)[/tex] in the function [tex]\( h(x) \)[/tex]:
To find [tex]\( h(6t - 3) \)[/tex], replace [tex]\( x \)[/tex] in [tex]\( h(x) \)[/tex] with [tex]\( 6t - 3 \)[/tex].
3. Therefore, you need to substitute [tex]\( x = 6t - 3 \)[/tex] into the equation [tex]\( h(x) = x^2 \)[/tex]:
[tex]\[
h(6t - 3) = (6t - 3)^2
\][/tex]
Thus, the function [tex]\( h(6t - 3) \)[/tex] is [tex]\( (6t - 3)^2 \)[/tex].