Answer :

To solve the problem, we need to evaluate the function [tex]\(f(x) = \sqrt{x^2 + 3}\)[/tex] at two specific points, [tex]\(x = 2\)[/tex] and [tex]\(x = 5\)[/tex], and then find the sum of these evaluations.

### Step 1: Calculate [tex]\( f(2) \)[/tex]

First, substitute [tex]\(x = 2\)[/tex] into the function:

[tex]\[ f(2) = \sqrt{2^2 + 3} \][/tex]

Simplify the expression inside the square root:

[tex]\[ 2^2 = 4 \][/tex]
[tex]\[ 4 + 3 = 7 \][/tex]

So,

[tex]\[ f(2) = \sqrt{7} \][/tex]

The approximate value of [tex]\(\sqrt{7}\)[/tex] is:

[tex]\[ f(2) \approx 2.6457513110645907 \][/tex]

### Step 2: Calculate [tex]\( f(5) \)[/tex]

Next, substitute [tex]\(x = 5\)[/tex] into the function:

[tex]\[ f(5) = \sqrt{5^2 + 3} \][/tex]

Simplify the expression inside the square root:

[tex]\[ 5^2 = 25 \][/tex]
[tex]\[ 25 + 3 = 28 \][/tex]

So,

[tex]\[ f(5) = \sqrt{28} \][/tex]

The approximate value of [tex]\(\sqrt{28}\)[/tex] is:

[tex]\[ f(5) \approx 5.291502622129181 \][/tex]

### Step 3: Find [tex]\( f(2) + f(5) \)[/tex]

Finally, add the two evaluated values:

[tex]\[ f(2) + f(5) = 2.6457513110645907 + 5.291502622129181 \][/tex]

[tex]\[ f(2) + f(5) \approx 7.937253933193772 \][/tex]

Thus, the sum [tex]\(f(2) + f(5) \approx 7.937253933193772\)[/tex].