Rawaah
Answered

What is the solution to the system of equations shown?

[tex]
\left\{\begin{array}{l}
y = -\frac{1}{2} x - 6 \\
2y - 3x = -8
\end{array}\right.
[/tex]



Answer :

To solve the system of equations:

[tex]\[ \left\{\begin{array}{l} y = -\frac{1}{2} x - 6 \\ 2y - 3x = -8 \end{array}\right. \][/tex]

we need to find the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that satisfy both equations simultaneously. Here is a step-by-step process to solve this system:

### Step 1: Express [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex] from the first equation
The first equation is already solved for [tex]\(y\)[/tex]:

[tex]\[ y = -\frac{1}{2}x - 6 \][/tex]

### Step 2: Substitute [tex]\(y\)[/tex] into the second equation
Now, we substitute [tex]\(y\)[/tex] from the first equation into the second equation:

[tex]\[ 2 \left(-\frac{1}{2} x - 6\right) - 3x = -8 \][/tex]

### Step 3: Simplify the equation
We first distribute [tex]\(2\)[/tex] to both terms inside the parenthesis:

[tex]\[ 2 \left(-\frac{1}{2} x\right) + 2(-6) - 3x = -8 \][/tex]

[tex]\[ - x - 12 - 3x = -8 \][/tex]

### Step 4: Combine like terms
Combine all the [tex]\(x\)[/tex] terms:

[tex]\[ -4x - 12 = -8 \][/tex]

### Step 5: Isolate [tex]\(x\)[/tex]
First, add 12 to both sides of the equation:

[tex]\[ -4x - 12 + 12 = -8 + 12 \][/tex]

[tex]\[ -4x = 4 \][/tex]

Next, divide both sides by [tex]\(-4\)[/tex] to solve for [tex]\(x\)[/tex]:

[tex]\[ x = \frac{4}{-4} \][/tex]

[tex]\[ x = -1 \][/tex]

### Step 6: Substitute [tex]\(x\)[/tex] back into the first equation to find [tex]\(y\)[/tex]
We substitute [tex]\(x = -1\)[/tex] back into the first equation:

[tex]\[ y = -\frac{1}{2}(-1) - 6 \][/tex]

[tex]\[ y = \frac{1}{2} - 6 \][/tex]

[tex]\[ y = \frac{1}{2} - \frac{12}{2} \][/tex]

[tex]\[ y = -\frac{11}{2} \][/tex]

[tex]\[ y = -5.5 \][/tex]

### Conclusion:
The solution to the system of equations is:

[tex]\[ x = -1 \quad \text{and} \quad y = -5.5 \][/tex]

Thus, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] that satisfy both equations are [tex]\(x = -1\)[/tex] and [tex]\(y = -5.5\)[/tex].