The zeros of a parabola are -4 and 2, and [tex]$(6,10)$[/tex] is a point on the graph. Which equation can be solved to determine the value of [tex]a[/tex] in the equation of the parabola?

A. [tex]10 = a(6 - 4)(6 + 2)[/tex]
B. [tex]6 = a(10 - 4)(10 + 2)[/tex]
C. [tex]6 = a(10 + 4)(10 - 2)[/tex]
D. [tex]10 = a(6 + 4)(6 - 2)[/tex]



Answer :

The equation of a parabola with roots [tex]\( x = -4 \)[/tex] and [tex]\( x = 2 \)[/tex] can be written in the factored form [tex]\( y = a(x + 4)(x - 2) \)[/tex]. We need to determine the value of [tex]\( a \)[/tex].

Given the point [tex]\((6, 10)\)[/tex] lies on the parabola, we substitute [tex]\( x = 6 \)[/tex] and [tex]\( y = 10 \)[/tex] into the equation [tex]\( y = a(x + 4)(x - 2) \)[/tex] and solve for [tex]\( a \)[/tex].

Let's substitute [tex]\( x = 6 \)[/tex] and [tex]\( y = 10 \)[/tex]:

[tex]\[ 10 = a(6 + 4)(6 - 2) \][/tex]

Simplifying inside the parentheses:

[tex]\[ 10 = a(10)(4) \][/tex]
[tex]\[ 10 = 40a \][/tex]

To solve for [tex]\( a \)[/tex]:

[tex]\[ a = \frac{10}{40} \][/tex]
[tex]\[ a = \frac{1}{4} \][/tex]

This is the correct equation that determines the value of [tex]\( a \)[/tex]:

[tex]\[ 10 = a(6 - 4)(6 + 2) \][/tex]

Thus, the correct answer is:
[tex]\[ 10 = a(6 - 4)(6 + 2) \][/tex]