Answer :
Sure, let's break down the problem step by step. We're given [tex]\( x = -4 \)[/tex] and need to evaluate the expression [tex]\( \frac{3x}{3} \times 3 \)[/tex].
1. Substitute the value of [tex]\( x \)[/tex] into the expression:
[tex]\[ 3x = 3 \times -4 \][/tex]
This results in:
[tex]\[ 3x = -12 \][/tex]
2. Divide the result by 3:
[tex]\[ \frac{3x}{3} = \frac{-12}{3} \][/tex]
This results in:
[tex]\[ \frac{3x}{3} = -4 \][/tex]
3. Multiply the quotient by 3:
[tex]\[ \left(\frac{3x}{3}\right) \times 3 = -4 \times 3 \][/tex]
This results in:
[tex]\[ \left(\frac{3x}{3}\right) \times 3 = -12 \][/tex]
So, the final value of the expression [tex]\( \frac{3x}{3} \times 3 \)[/tex] when [tex]\( x = -4 \)[/tex] is [tex]\( -12 \)[/tex].
To summarize, we moved through each mathematical operation systematically:
- First, multiplying [tex]\( 3 \times -4 \)[/tex] to get [tex]\(-12\)[/tex].
- Second, dividing [tex]\(-12\)[/tex] by [tex]\(3\)[/tex] to obtain [tex]\(-4\)[/tex].
- Finally, multiplying [tex]\(-4\)[/tex] by [tex]\(3\)[/tex] to arrive at [tex]\(-12\)[/tex].
These results agree with each other consistently:
- Numerator part: [tex]\(-12\)[/tex]
- Division part: [tex]\(-4.0\)[/tex]
- Final multiplication: [tex]\(-12.0\)[/tex]
Therefore, the solution is [tex]\( \boxed{-12} \)[/tex].
1. Substitute the value of [tex]\( x \)[/tex] into the expression:
[tex]\[ 3x = 3 \times -4 \][/tex]
This results in:
[tex]\[ 3x = -12 \][/tex]
2. Divide the result by 3:
[tex]\[ \frac{3x}{3} = \frac{-12}{3} \][/tex]
This results in:
[tex]\[ \frac{3x}{3} = -4 \][/tex]
3. Multiply the quotient by 3:
[tex]\[ \left(\frac{3x}{3}\right) \times 3 = -4 \times 3 \][/tex]
This results in:
[tex]\[ \left(\frac{3x}{3}\right) \times 3 = -12 \][/tex]
So, the final value of the expression [tex]\( \frac{3x}{3} \times 3 \)[/tex] when [tex]\( x = -4 \)[/tex] is [tex]\( -12 \)[/tex].
To summarize, we moved through each mathematical operation systematically:
- First, multiplying [tex]\( 3 \times -4 \)[/tex] to get [tex]\(-12\)[/tex].
- Second, dividing [tex]\(-12\)[/tex] by [tex]\(3\)[/tex] to obtain [tex]\(-4\)[/tex].
- Finally, multiplying [tex]\(-4\)[/tex] by [tex]\(3\)[/tex] to arrive at [tex]\(-12\)[/tex].
These results agree with each other consistently:
- Numerator part: [tex]\(-12\)[/tex]
- Division part: [tex]\(-4.0\)[/tex]
- Final multiplication: [tex]\(-12.0\)[/tex]
Therefore, the solution is [tex]\( \boxed{-12} \)[/tex].