Answer :

Let's solve the expression [tex]\(\frac{3x}{x} + x \cdot 3\)[/tex] step by step given that [tex]\( x = -4 \)[/tex].

1. Calculate [tex]\(\frac{3x}{x}\)[/tex]:

Substitute [tex]\( x = -4 \)[/tex] into the expression:
[tex]\[ \frac{3(-4)}{-4} \][/tex]

This simplifies to:
[tex]\[ \frac{-12}{-4} = 3 \][/tex]

So, the value of [tex]\(\frac{3x}{x}\)[/tex] is 3.

2. Calculate [tex]\( x \cdot 3 \)[/tex]:

Substitute [tex]\( x = -4 \)[/tex] into the expression:
[tex]\[ (-4) \cdot 3 \][/tex]

This simplifies to:
[tex]\[ -12 \][/tex]

So, the value of [tex]\( x \cdot 3 \)[/tex] is [tex]\(-12\)[/tex].

3. Add the two results together:

[tex]\[ 3 + (-12) \][/tex]

This simplifies to:
[tex]\[ 3 - 12 = -9 \][/tex]

Therefore, the value of the expression [tex]\(\frac{3x}{x} + x \cdot 3\)[/tex] when [tex]\( x = -4 \)[/tex] is [tex]\(-9\)[/tex].