Let's solve the expression [tex]\(\frac{3x}{x} + x \cdot 3\)[/tex] step by step given that [tex]\( x = -4 \)[/tex].
1. Calculate [tex]\(\frac{3x}{x}\)[/tex]:
Substitute [tex]\( x = -4 \)[/tex] into the expression:
[tex]\[
\frac{3(-4)}{-4}
\][/tex]
This simplifies to:
[tex]\[
\frac{-12}{-4} = 3
\][/tex]
So, the value of [tex]\(\frac{3x}{x}\)[/tex] is 3.
2. Calculate [tex]\( x \cdot 3 \)[/tex]:
Substitute [tex]\( x = -4 \)[/tex] into the expression:
[tex]\[
(-4) \cdot 3
\][/tex]
This simplifies to:
[tex]\[
-12
\][/tex]
So, the value of [tex]\( x \cdot 3 \)[/tex] is [tex]\(-12\)[/tex].
3. Add the two results together:
[tex]\[
3 + (-12)
\][/tex]
This simplifies to:
[tex]\[
3 - 12 = -9
\][/tex]
Therefore, the value of the expression [tex]\(\frac{3x}{x} + x \cdot 3\)[/tex] when [tex]\( x = -4 \)[/tex] is [tex]\(-9\)[/tex].