Answer :
To determine the equivalent temperature in Fahrenheit for a given temperature in Celsius, we can use the formula:
[tex]\[ F = C \times \frac{9}{5} + 32 \][/tex]
where [tex]\( C \)[/tex] is the temperature in Celsius and [tex]\( F \)[/tex] is the temperature in Fahrenheit.
Let's substitute the given temperature of [tex]\( 20^{\circ} C \)[/tex] into the formula:
[tex]\[ F = 20 \times \frac{9}{5} + 32 \][/tex]
First, we calculate the part inside the multiplication:
[tex]\[ 20 \times \frac{9}{5} = 20 \times 1.8 = 36 \][/tex]
Next, we add 32 to the result:
[tex]\[ 36 + 32 = 68 \][/tex]
Therefore, a temperature of [tex]\( 20^{\circ} C \)[/tex] is equivalent to [tex]\( 68^{\circ} F \)[/tex].
Now, let's match this with the given choices:
- A. [tex]\(68^{\circ} F\)[/tex]
- B. [tex]\(136^{\circ} F\)[/tex]
- C. [tex]\(32^{\circ} F\)[/tex]
- D. [tex]\(-6^{\circ} F\)[/tex]
The correct answer is:
A. [tex]\( 68^{\circ} F \)[/tex]
[tex]\[ F = C \times \frac{9}{5} + 32 \][/tex]
where [tex]\( C \)[/tex] is the temperature in Celsius and [tex]\( F \)[/tex] is the temperature in Fahrenheit.
Let's substitute the given temperature of [tex]\( 20^{\circ} C \)[/tex] into the formula:
[tex]\[ F = 20 \times \frac{9}{5} + 32 \][/tex]
First, we calculate the part inside the multiplication:
[tex]\[ 20 \times \frac{9}{5} = 20 \times 1.8 = 36 \][/tex]
Next, we add 32 to the result:
[tex]\[ 36 + 32 = 68 \][/tex]
Therefore, a temperature of [tex]\( 20^{\circ} C \)[/tex] is equivalent to [tex]\( 68^{\circ} F \)[/tex].
Now, let's match this with the given choices:
- A. [tex]\(68^{\circ} F\)[/tex]
- B. [tex]\(136^{\circ} F\)[/tex]
- C. [tex]\(32^{\circ} F\)[/tex]
- D. [tex]\(-6^{\circ} F\)[/tex]
The correct answer is:
A. [tex]\( 68^{\circ} F \)[/tex]