3. A temperature of [tex]20^{\circ} C[/tex] is equivalent to approximately:

A. [tex]68^{\circ} F[/tex]
B. [tex]136^{\circ} F[/tex]
C. [tex]32^{\circ} F[/tex]
D. [tex]-6^{\circ} F[/tex]



Answer :

To determine the equivalent temperature in Fahrenheit for a given temperature in Celsius, we can use the formula:

[tex]\[ F = C \times \frac{9}{5} + 32 \][/tex]

where [tex]\( C \)[/tex] is the temperature in Celsius and [tex]\( F \)[/tex] is the temperature in Fahrenheit.

Let's substitute the given temperature of [tex]\( 20^{\circ} C \)[/tex] into the formula:

[tex]\[ F = 20 \times \frac{9}{5} + 32 \][/tex]

First, we calculate the part inside the multiplication:

[tex]\[ 20 \times \frac{9}{5} = 20 \times 1.8 = 36 \][/tex]

Next, we add 32 to the result:

[tex]\[ 36 + 32 = 68 \][/tex]

Therefore, a temperature of [tex]\( 20^{\circ} C \)[/tex] is equivalent to [tex]\( 68^{\circ} F \)[/tex].

Now, let's match this with the given choices:
- A. [tex]\(68^{\circ} F\)[/tex]
- B. [tex]\(136^{\circ} F\)[/tex]
- C. [tex]\(32^{\circ} F\)[/tex]
- D. [tex]\(-6^{\circ} F\)[/tex]

The correct answer is:
A. [tex]\( 68^{\circ} F \)[/tex]