Answer :

Let's solve the problem step-by-step:

First, we are given the expression for [tex]\( x \)[/tex]:
[tex]\[ x = \left( \frac{2}{3} \right)^{-4} \times \left( \frac{3}{2} \right)^2 \][/tex]

1. Evaluate [tex]\(\left( \frac{2}{3} \right)^{-4}\)[/tex]:

Recall that raising a fraction to a negative exponent involves taking the reciprocal of the fraction and then raising it to the positive value of the exponent. So,
[tex]\[ \left( \frac{2}{3} \right)^{-4} = \left( \frac{3}{2} \right)^4 \][/tex]

Now calculate [tex]\(\left( \frac{3}{2} \right)^4\)[/tex]:
[tex]\[ \left( \frac{3}{2} \right)^4 = \frac{3^4}{2^4} = \frac{81}{16} \][/tex]

2. Evaluate [tex]\(\left( \frac{3}{2} \right)^2\)[/tex]:

Similarly,
[tex]\[ \left( \frac{3}{2} \right)^2 = \frac{3^2}{2^2} = \frac{9}{4} \][/tex]

3. Multiply the evaluated expressions:

We need to multiply [tex]\( \frac{81}{16} \)[/tex] by [tex]\( \frac{9}{4} \)[/tex]:
[tex]\[ x = \frac{81}{16} \times \frac{9}{4} = \frac{81 \times 9}{16 \times 4} = \frac{729}{64} \][/tex]

Therefore,
[tex]\[ x = 11.390625 \][/tex]

4. Find the value of [tex]\( b \cdot [x]^{-1} \)[/tex]:

We need to compute [tex]\([x]^{-1}\)[/tex], which is the reciprocal of [tex]\( x \)[/tex]:
[tex]\[ [x]^{-1} = \frac{1}{x} = \frac{1}{11.390625} = 0.08779149519890259 \][/tex]

Given [tex]\( b \)[/tex] (assuming [tex]\( b = 1 \)[/tex] for this specific solution), the final value is:
[tex]\[ b \cdot [x]^{-1} = 1 \cdot 0.08779149519890259 = 0.08779149519890259 \][/tex]

Hence, [tex]\( b \cdot [x]^{-1} = 0.08779149519890259 \)[/tex].