Find the error and create an inequality.

The following is a solution to the inequality [tex]\(\frac{5}{18}-\frac{x-2}{9} \leq \frac{x-4}{6}\)[/tex]:

[tex]\[
\begin{array}{l}
\frac{5}{18}-\frac{x-2}{9} \leq \frac{x-4}{6} \\
\frac{5}{18}-\frac{2}{2} \cdot \frac{x-2}{9} \leq \frac{x-4}{6} \cdot \frac{3}{3} \\
\frac{5}{18}-\frac{2 x-2}{18} \leq \frac{3 x-4}{18} \\
5-(2 x-2) \leq 3 x-4 \\
5-2 x+2 \leq 3 x-4 \\
7-2 x \leq 3 x-4 \\
-5 x \leq-11 \\
x \leq \frac{11}{5}
\end{array}
\][/tex]

Find the error in the solution and correct it to create a proper inequality.



Answer :

To solve the inequality [tex]\(\frac{5}{18}-\frac{x-2}{9} \leq \frac{x-4}{6}\)[/tex], follow these steps:

1. Identify a common denominator for the fractions involved.
[tex]\[ \text{The common denominator for } 18, 9, \text{ and } 6 \text{ is } 18. \][/tex]

2. Rewrite each term with the common denominator:
[tex]\[ \frac{5}{18} - \frac{x-2}{9} \leq \frac{x-4}{6} \][/tex]
[tex]\[ \frac{5}{18} - \frac{2(x-2)}{18} \leq \frac{3(x-4)}{18} \][/tex]
[tex]\( \text{(multiply both the numerator and the denominator of } \frac{x-2}{9} \text{ by 2 and } \frac{x-4}{6} \text{ by 3)}\)[/tex].

3. Combine the fractions on the left-hand side:
[tex]\[ \frac{5}{18} - \frac{2(x-2)}{18} = \frac{5 - 2(x-2)}{18} = \frac{5 - 2x + 4}{18} = \frac{9 - 2x}{18} \][/tex]

4. Combine the fractions on the right-hand side:
[tex]\[ \frac{3(x-4)}{18} = \frac{3x - 12}{18} \][/tex]

5. Rewrite the inequality with the fractions combined:
[tex]\[ \frac{9 - 2x}{18} \leq \frac{3x - 12}{18} \][/tex]

6. Eliminate the common denominator by multiplying both sides by 18:
[tex]\[ 9 - 2x \leq 3x - 12 \][/tex]

7. Combine like terms by moving [tex]\(2x\)[/tex] to the right side and -12 to the left side:
[tex]\[ 9 + 12 \leq 3x + 2x \][/tex]
[tex]\[ 21 \leq 5x \][/tex]

8. Isolate [tex]\(x\)[/tex] by dividing both sides by 5:
[tex]\[ x \geq \frac{21}{5} \][/tex]

So we find that:

[tex]\[ x \geq 4.2 \][/tex]

The correct solution to the inequality [tex]\(\frac{5}{18} - \frac{x-2}{9} \leq \frac{x-4}{6}\)[/tex] is [tex]\(x \geq 4.2\)[/tex].