Answer :
Certainly! Let's solve the equation:
[tex]\[ 8 \times 9 = (5 \times \square) + (3 \times 9) \][/tex]
First, let's calculate the left side of the equation:
[tex]\[ 8 \times 9 = 72 \][/tex]
Now, let's examine the right side. We already have:
[tex]\[ (3 \times 9) \][/tex]
Let's calculate this part:
[tex]\[ 3 \times 9 = 27 \][/tex]
So the original equation now is:
[tex]\[ 72 = (5 \times \square) + 27 \][/tex]
To isolate [tex]\( \square \)[/tex], we need to subtract 27 from both sides of the equation:
[tex]\[ 72 - 27 = 5 \times \square \][/tex]
Let's perform the subtraction:
[tex]\[ 72 - 27 = 45 \][/tex]
So the equation becomes:
[tex]\[ 45 = 5 \times \square \][/tex]
To find the value of [tex]\( \square \)[/tex], we divide both sides by 5:
[tex]\[ \square = \frac{45}{5} \][/tex]
Perform the division:
[tex]\[ \frac{45}{5} = 9 \][/tex]
Therefore, the value of [tex]\( \square \)[/tex] is:
[tex]\[ \square = 9 \][/tex]
So the complete breakdown is:
- The left side of the equation [tex]\( 8 \times 9 \)[/tex] equals 72.
- The part of the right side already given, [tex]\( 3 \times 9 \)[/tex], equals 27.
- Subtracting 27 from 72 gives us 45.
- Dividing 45 by 5 gives us 9.
Thus, the value that satisfies the equation [tex]\( 8 \times 9 = (5 \times \square) + (3 \times 9) \)[/tex] is [tex]\( \square = 9 \)[/tex].
[tex]\[ 8 \times 9 = (5 \times \square) + (3 \times 9) \][/tex]
First, let's calculate the left side of the equation:
[tex]\[ 8 \times 9 = 72 \][/tex]
Now, let's examine the right side. We already have:
[tex]\[ (3 \times 9) \][/tex]
Let's calculate this part:
[tex]\[ 3 \times 9 = 27 \][/tex]
So the original equation now is:
[tex]\[ 72 = (5 \times \square) + 27 \][/tex]
To isolate [tex]\( \square \)[/tex], we need to subtract 27 from both sides of the equation:
[tex]\[ 72 - 27 = 5 \times \square \][/tex]
Let's perform the subtraction:
[tex]\[ 72 - 27 = 45 \][/tex]
So the equation becomes:
[tex]\[ 45 = 5 \times \square \][/tex]
To find the value of [tex]\( \square \)[/tex], we divide both sides by 5:
[tex]\[ \square = \frac{45}{5} \][/tex]
Perform the division:
[tex]\[ \frac{45}{5} = 9 \][/tex]
Therefore, the value of [tex]\( \square \)[/tex] is:
[tex]\[ \square = 9 \][/tex]
So the complete breakdown is:
- The left side of the equation [tex]\( 8 \times 9 \)[/tex] equals 72.
- The part of the right side already given, [tex]\( 3 \times 9 \)[/tex], equals 27.
- Subtracting 27 from 72 gives us 45.
- Dividing 45 by 5 gives us 9.
Thus, the value that satisfies the equation [tex]\( 8 \times 9 = (5 \times \square) + (3 \times 9) \)[/tex] is [tex]\( \square = 9 \)[/tex].