Which answers are elements of the solution set of the inequality? Check all that apply.

[tex]\[ x - 72 \geq -96 \][/tex]

A. 14
B. -28
C. -80
D. -24
E. -25
F. 23



Answer :

Let's solve the inequality step-by-step and determine which of the given options are elements of the solution set.

1. We start with the inequality:
[tex]\[ x - 72 \geq -96 \][/tex]

2. To isolate [tex]\( x \)[/tex], we need to add 72 to both sides of the inequality:
[tex]\[ x - 72 + 72 \geq -96 + 72 \][/tex]
3. Simplifying both sides, we get:
[tex]\[ x \geq -24 \][/tex]

So, the inequality simplifies to [tex]\( x \geq -24 \)[/tex]. We now test each option against this condition to see if it satisfies the inequality.

- Option A: 14
[tex]\[ 14 \geq -24 \quad \text{(True)} \][/tex]

- Option B: -28
[tex]\[ -28 \geq -24 \quad \text{(False)} \][/tex]

- Option C: -80
[tex]\[ -80 \geq -24 \quad \text{(False)} \][/tex]

- Option D: -24
[tex]\[ -24 \geq -24 \quad \text{(True)} \][/tex]

- Option E: -25
[tex]\[ -25 \geq -24 \quad \text{(False)} \][/tex]

- Option F: 23
[tex]\[ 23 \geq -24 \quad \text{(True)} \][/tex]

Thus, the values that satisfy the inequality [tex]\( x \geq -24 \)[/tex] are 14, -24, and 23.

Therefore, the answers that are elements of the solution set of the inequality [tex]\( x - 72 \geq -96 \)[/tex] are:

A. 14
D. -24
F. 23