Certainly! Let's break down the values for each expression step-by-step and match them to the correct numerical value:
1. Expression: [tex]\( 12 - x \)[/tex]
- When [tex]\( x = 9 \)[/tex]:
[tex]\[
12 - 9 = 3
\][/tex]
- So, [tex]\( 12 - x \)[/tex] matches with [tex]\( 3 \)[/tex].
2. Expression: [tex]\( x + 3y \)[/tex]
- When [tex]\( x = 9 \)[/tex] and [tex]\( y = 6 \)[/tex]:
[tex]\[
9 + 3 \cdot 6 = 9 + 18 = 27
\][/tex]
- So, [tex]\( x + 3y \)[/tex] matches with [tex]\( 27 \)[/tex].
3. Expression: [tex]\( 4y - 10 \)[/tex]
- When [tex]\( y = 6 \)[/tex]:
[tex]\[
4 \cdot 6 - 10 = 24 - 10 = 14
\][/tex]
- So, [tex]\( 4y - 10 \)[/tex] matches with [tex]\( 14 \)[/tex].
4. Expression: [tex]\( \frac{1}{3} x y \)[/tex]
- When [tex]\( x = 9 \)[/tex] and [tex]\( y = 6 \)[/tex]:
[tex]\[
\frac{1}{3} \cdot 9 \cdot 6 = 18
\][/tex]
- So, [tex]\( \frac{1}{3} x y \)[/tex] matches with [tex]\( 18 \)[/tex].
Therefore, the correct matching pairs are:
[tex]\[
\begin{array}{lcl}
12 - x & \text{matches with} & 3 \\
x + 3y & \text{matches with} & 27 \\
4y - 10 & \text{matches with} & 14 \\
\frac{1}{3}xy & \text{matches with} & 18 \\
\end{array}
\][/tex]