Evaluate and match each expression on the left to its value on the right, when [tex]$x=9$[/tex] and [tex]$y=6$[/tex].

[tex]\[
\begin{array}{l}
12 - x \\
x + 3y \\
4y - 10 \\
\frac{1}{3}xy
\end{array}
\][/tex]

Match with:

14

3

18



Answer :

Certainly! Let's break down the values for each expression step-by-step and match them to the correct numerical value:

1. Expression: [tex]\( 12 - x \)[/tex]
- When [tex]\( x = 9 \)[/tex]:
[tex]\[ 12 - 9 = 3 \][/tex]
- So, [tex]\( 12 - x \)[/tex] matches with [tex]\( 3 \)[/tex].

2. Expression: [tex]\( x + 3y \)[/tex]
- When [tex]\( x = 9 \)[/tex] and [tex]\( y = 6 \)[/tex]:
[tex]\[ 9 + 3 \cdot 6 = 9 + 18 = 27 \][/tex]
- So, [tex]\( x + 3y \)[/tex] matches with [tex]\( 27 \)[/tex].

3. Expression: [tex]\( 4y - 10 \)[/tex]
- When [tex]\( y = 6 \)[/tex]:
[tex]\[ 4 \cdot 6 - 10 = 24 - 10 = 14 \][/tex]
- So, [tex]\( 4y - 10 \)[/tex] matches with [tex]\( 14 \)[/tex].

4. Expression: [tex]\( \frac{1}{3} x y \)[/tex]
- When [tex]\( x = 9 \)[/tex] and [tex]\( y = 6 \)[/tex]:
[tex]\[ \frac{1}{3} \cdot 9 \cdot 6 = 18 \][/tex]
- So, [tex]\( \frac{1}{3} x y \)[/tex] matches with [tex]\( 18 \)[/tex].

Therefore, the correct matching pairs are:

[tex]\[ \begin{array}{lcl} 12 - x & \text{matches with} & 3 \\ x + 3y & \text{matches with} & 27 \\ 4y - 10 & \text{matches with} & 14 \\ \frac{1}{3}xy & \text{matches with} & 18 \\ \end{array} \][/tex]