Answer :

To simplify the expression [tex]\(\frac{7}{24} + \frac{9}{24} - \frac{1}{24} + \frac{11}{24}\)[/tex], follow these steps:

1. Identify the common denominator:

All fractions have a common denominator of 24.

2. Combine the fractions:

Combine the numerators over the common denominator:
[tex]\[ \frac{7}{24} + \frac{9}{24} - \frac{1}{24} + \frac{11}{24} = \frac{7 + 9 - 1 + 11}{24} \][/tex]

3. Perform the operations in the numerator:

Add and subtract the numerators step-by-step:
[tex]\[ 7 + 9 = 16 \][/tex]
[tex]\[ 16 - 1 = 15 \][/tex]
[tex]\[ 15 + 11 = 26 \][/tex]

4. Combine the result:

Now, we have:
[tex]\[ \frac{7 + 9 - 1 + 11}{24} = \frac{26}{24} \][/tex]

5. Simplify the fraction:

Simplify [tex]\(\frac{26}{24}\)[/tex] by dividing both the numerator and the denominator by their greatest common divisor (GCD), which is 2:
[tex]\[ \frac{26 \div 2}{24 \div 2} = \frac{13}{12} \][/tex]

Now, if we express [tex]\(\frac{13}{12}\)[/tex] as a mixed number, we get:
[tex]\[ 1 \frac{1}{12} \][/tex]

Thus, the simplified form of the given expression is [tex]\(\frac{13}{12}\)[/tex] or [tex]\(1 \frac{1}{12}\)[/tex].