What is the approximate tangential speed of an object orbiting Earth with a radius of [tex]1.8 \times 10^8 \, \text{m}[/tex] and a period of [tex]2.2 \times 10^4 \, \text{s}[/tex]?

A. [tex]7.7 \times 10^{-4} \, \text{m/s}[/tex]
B. [tex]5.1 \times 10^4 \, \text{m/s}[/tex]
C. [tex]7.7 \times 10^4 \, \text{m/s}[/tex]
D. [tex]5.1 \times 10^5 \, \text{m/s}[/tex]



Answer :

To find the tangential speed of an object orbiting Earth, we use the formula for tangential speed, which is given by:

[tex]\[ v = \frac{2 \pi r}{T} \][/tex]

where:
- [tex]\( v \)[/tex] is the tangential speed,
- [tex]\( r \)[/tex] is the radius of the orbit,
- [tex]\( T \)[/tex] is the period of the orbit.

Given values:
- Radius, [tex]\( r = 1.8 \times 10^8 \)[/tex] meters,
- Period, [tex]\( T = 2.2 \times 10^4 \)[/tex] seconds.

Let's calculate the tangential speed step-by-step.

1. Substituting the given values into the formula:

[tex]\[ v = \frac{2 \pi \times 1.8 \times 10^8}{2.2 \times 10^4} \][/tex]

2. Calculate the numerator:

[tex]\[ 2 \pi \times 1.8 \times 10^8 \approx 11.309733552 \times 10^8 \][/tex]

3. Divide the numerator by the period:

[tex]\[ v = \frac{11.309733552 \times 10^8}{2.2 \times 10^4} \approx 51407.8797860148 \, \text{m/s} \][/tex]

So, the approximate tangential speed of the object is [tex]\( 51407.8797860148 \)[/tex] meters per second.

Therefore, among the provided options, the closest value is:

[tex]\[ 5.1 \times 10^4 \, \text{m/s} \][/tex]

So, the correct answer is:

[tex]\[ 5.1 \times 10^4 \, \text{m/s} \][/tex]