Let's solve the equation [tex]\( 3x + 4y = 28 \)[/tex] for [tex]\( y \)[/tex].
1. Start with the given equation:
[tex]\[ 3x + 4y = 28 \][/tex]
2. Isolate the term involving [tex]\( y \)[/tex]:
Subtract [tex]\( 3x \)[/tex] from both sides of the equation to isolate the term containing [tex]\( y \)[/tex].
[tex]\[ 4y = 28 - 3x \][/tex]
3. Solve for [tex]\( y \)[/tex]:
Divide both sides of the equation by [tex]\( 4 \)[/tex] to solve for [tex]\( y \)[/tex].
[tex]\[ y = \frac{28 - 3x}{4} \][/tex]
4. Simplify the expression:
Break down the right side to simplify.
[tex]\[ y = \frac{28}{4} - \frac{3x}{4} \][/tex]
Simplify each term:
[tex]\[ y = 7 - \frac{3x}{4} \][/tex]
So, the solution for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex] is:
[tex]\[ y = 7 - \frac{3x}{4} \][/tex]