Answer :

Sure, let's compare the two fractions given:

1. First, we need to calculate the value of [tex]\(\frac{1}{7} \text{ of } \frac{3}{5}\)[/tex].

To find [tex]\(\frac{1}{7} \text{ of } \frac{3}{5}\)[/tex], we multiply the two fractions:
[tex]\[ \frac{1}{7} \times \frac{3}{5} = \frac{1 \times 3}{7 \times 5} = \frac{3}{35} \][/tex]
This fraction, [tex]\(\frac{3}{35}\)[/tex], is approximately equal to [tex]\(0.0857142857142857\)[/tex].

2. Next, we need to calculate the value of [tex]\(\frac{1}{5} \text{ of } \frac{5}{8}\)[/tex].

To find [tex]\(\frac{1}{5} \text{ of } \frac{5}{8}\)[/tex], we multiply the two fractions:
[tex]\[ \frac{1}{5} \times \frac{5}{8} = \frac{1 \times 5}{5 \times 8} = \frac{5}{40} = \frac{1}{8} \][/tex]
This fraction, [tex]\(\frac{1}{8}\)[/tex], is equal to [tex]\(0.125\)[/tex].

3. Now, we compare the two calculated values:
- [tex]\(\frac{3}{35} \approx 0.0857142857142857\)[/tex]
- [tex]\(\frac{1}{8} = 0.125\)[/tex]

Clearly, [tex]\(0.125\)[/tex] is greater than [tex]\(0.0857142857142857\)[/tex].

Therefore, [tex]\(\frac{1}{5} \text{ of } \frac{5}{8}\)[/tex] (which is [tex]\(\frac{1}{8}\)[/tex]) is greater than [tex]\(\frac{1}{7} \text{ of } \frac{3}{5}\)[/tex] (which is [tex]\(\frac{3}{35}\)[/tex]). The fraction [tex]\(\frac{1}{8}\)[/tex] is the greater fraction.