Find the value of [tex]a[/tex] and [tex]b[/tex] so that [tex]x+1[/tex] and [tex]x-1[/tex] are factors of [tex]x^4 + a x^3 + 2 x^2 - 3 x + b[/tex].



Answer :

Certainly! To find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] so that [tex]\(x+1\)[/tex] and [tex]\(x-1\)[/tex] are factors of the polynomial [tex]\(x^4 + a x^3 + 2 x^2 - 3 x + b\)[/tex], we need to follow these steps:

1. Apply the Factor Theorem: The Factor Theorem states that [tex]\(x - c\)[/tex] is a factor of a polynomial if and only if the polynomial evaluated at [tex]\(c\)[/tex] is zero. Therefore, [tex]\(x+1\)[/tex] and [tex]\(x-1\)[/tex] being factors implies:
- [tex]\(P(-1) = 0\)[/tex]
- [tex]\(P(1) = 0\)[/tex]

2. Set up the polynomial [tex]\(P(x)\)[/tex]:
[tex]\[ P(x) = x^4 + a x^3 + 2 x^2 - 3 x + b \][/tex]

3. Evaluate the polynomial at [tex]\(x = -1\)[/tex] and [tex]\(x = 1\)[/tex]:

- For [tex]\(x = -1\)[/tex]:
[tex]\[ P(-1) = (-1)^4 + a(-1)^3 + 2(-1)^2 - 3(-1) + b = 0 \][/tex]
Simplifying the above:
[tex]\[ 1 - a + 2 + 3 + b = 0 \implies 6 - a + b = 0 \implies a - b = 6 \quad \text{(Equation 1)} \][/tex]

- For [tex]\(x = 1\)[/tex]:
[tex]\[ P(1) = (1)^4 + a(1)^3 + 2(1)^2 - 3(1) + b = 0 \][/tex]
Simplifying the above:
[tex]\[ 1 + a + 2 - 3 + b = 0 \implies a + b = 0 \quad \text{(Equation 2)} \][/tex]


4. Solve the system of linear equations obtained:

We have:
[tex]\[ \begin{cases} a - b = 6 & \quad \text{(Equation 1)} \\ a + b = 0 & \quad \text{(Equation 2)} \end{cases} \][/tex]

To solve these, we can add both equations:
[tex]\[ (a - b) + (a + b) = 6 + 0 \implies 2a = 6 \implies a = 3 \][/tex]

Substitute [tex]\(a = 3\)[/tex] into Equation 2:
[tex]\[ 3 + b = 0 \implies b = -3 \][/tex]


Therefore, the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that make [tex]\(x+1\)[/tex] and [tex]\(x-1\)[/tex] factors of the polynomial [tex]\(x^4 + a x^3 + 2 x^2 - 3 x + b\)[/tex] are:
[tex]\[ a = 3 \quad \text{and} \quad b = -3 \][/tex]