Which of the following is a point on the graph of [tex]$y=\left(\frac{1}{2}\right)^x$[/tex]?

A. (2, [tex]\frac{1}{4}[/tex])
B. [tex]\left(0, \frac{1}{2}\right)[/tex]
C. (2, 1)
D. (0, 0)



Answer :

Let's determine which points are on the graph of the equation [tex]\( y = \left(\frac{1}{2}\right)^x \)[/tex].

1. Point (2, [tex]\(\frac{1}{4}\)[/tex]):
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = \left( \frac{1}{2} \right)^2 = \frac{1}{4} \][/tex]
- The y-value matches [tex]\(\frac{1}{4}\)[/tex] given in the point.
- Therefore, (2, [tex]\(\frac{1}{4}\)[/tex]) is a point on the graph.

2. Point [tex]\((0, \frac{1}{2})\)[/tex]:
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = \left( \frac{1}{2} \right)^0 = 1 \][/tex]
- The y-value is 1, but the point has a y-value of [tex]\(\frac{1}{2}\)[/tex].
- Therefore, [tex]\((0, \frac{1}{2})\)[/tex] is not a point on the graph.

3. Point [tex]\((2, 1)\)[/tex]:
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = \left( \frac{1}{2} \right)^2 = \frac{1}{4} \][/tex]
- The y-value is [tex]\(\frac{1}{4}\)[/tex], but the point has a y-value of 1.
- Therefore, [tex]\((2, 1)\)[/tex] is not a point on the graph.

4. Point [tex]\((0, 0)\)[/tex]:
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = \left( \frac{1}{2} \right)^0 = 1 \][/tex]
- The y-value is 1, but the point has a y-value of 0.
- Therefore, [tex]\((0, 0)\)[/tex] is not a point on the graph.

So the point that is on the graph of [tex]\( y = \left(\frac{1}{2}\right)^x \)[/tex] is:
[tex]\[ (2, \frac{1}{4}) \][/tex]