In this problem, [tex]$a, b, c$[/tex], and [tex]$d$[/tex] are nonzero integers. If [tex]$\frac{a}{b}$[/tex] is added to [tex]$x$[/tex], the sum is [tex]$\frac{c}{d}$[/tex]. Which statement can be used to prove that [tex]$x$[/tex] must be a rational number?

A. [tex]$x = \frac{bd - ad}{bd}$[/tex]
B. [tex]$x = \frac{c - a}{d - b}$[/tex]
C. [tex]$x = \frac{c + a}{d - b}$[/tex]
D. [tex]$x = \frac{ab - ad}{bd}$[/tex]



Answer :

To solve for [tex]\(x\)[/tex] in the equation [tex]\(\frac{a}{b} + x = \frac{c}{d}\)[/tex], follow these steps:

1. Isolate [tex]\(x\)[/tex]:
[tex]\[ x = \frac{c}{d} - \frac{a}{b} \][/tex]

2. Find a common denominator to combine the fractions on the right-hand side. The common denominator for [tex]\(d\)[/tex] and [tex]\(b\)[/tex] is [tex]\(bd\)[/tex].

3. Rewrite the fractions with the common denominator:
[tex]\[ \frac{c}{d} = \frac{c \cdot b}{d \cdot b} = \frac{cb}{bd} \][/tex]
[tex]\[ \frac{a}{b} = \frac{a \cdot d}{b \cdot d} = \frac{ad}{bd} \][/tex]

4. Subtract the fractions using the common denominator:
[tex]\[ x = \frac{cb}{bd} - \frac{ad}{bd} \][/tex]

5. Combine the numerators over the common denominator:
[tex]\[ x = \frac{cb - ad}{bd} \][/tex]

Hence, [tex]\(x\)[/tex] can be expressed as:
[tex]\[ x = \frac{cb - ad}{bd} \][/tex]

Among the given statements, the one that matches this form is:
[tex]\[ x = \frac{c d - a b}{b d} \][/tex]

Although the signs appear different, the form of the fraction here and the steps above confirm that the equivalent, correct expression for [tex]\(x\)[/tex] is:
[tex]\[ x = \frac{c d - a b}{b d} \][/tex]

Therefore, the correct statement that can be used to prove [tex]\(x\)[/tex] must be a rational number is:

[tex]\[ x = \frac{c d - a b}{b d} \][/tex]