Answer :

To solve for [tex]\( a \)[/tex] using the Pythagorean Theorem, we start with the equation given by the theorem:

[tex]\[ a^2 + b^2 = c^2 \][/tex]

We need to isolate [tex]\( a \)[/tex]. To do this, we'll rearrange the equation to solve for [tex]\( a^2 \)[/tex]:

[tex]\[ a^2 = c^2 - b^2 \][/tex]

Now, to find [tex]\( a \)[/tex], we'll take the square root of both sides of the equation:

[tex]\[ a = \sqrt{c^2 - b^2} \][/tex]

Given specific values for [tex]\( b \)[/tex] and [tex]\( c \)[/tex], we can substitute these values into the equation to find the numerical result for [tex]\( a \)[/tex]. In this case, we have:

[tex]\[ b = 0 \][/tex]
[tex]\[ c = 0 \][/tex]

Substituting these values in:

[tex]\[ a^2 = 0^2 - 0^2 \][/tex]

[tex]\[ a^2 = 0 \][/tex]

Taking the square root of both sides:

[tex]\[ a = \sqrt{0} \][/tex]

[tex]\[ a = 0 \][/tex]

Thus, the result for [tex]\( a \)[/tex] is 0. Additionally, the intermediate value for [tex]\( a^2 \)[/tex] would be:

[tex]\[ a^2 = 0 \][/tex]

Hence, the complete solution can be summarized as follows:

[tex]\[ a^2 = 0 \][/tex]
[tex]\[ a = \sqrt{0} = 0 \][/tex]