Sure, I would be happy to explain the solution step by step.
Step 1: Understand the expression
The given expression is:
[tex]\[ 36 c y^5 - 56 c^2 y^3 z \][/tex]
Step 2: Identify terms and variables
In this expression, the terms are:
1. [tex]\( 36 c y^5 \)[/tex]
2. [tex]\( -56 c^2 y^3 z \)[/tex]
The variables present are [tex]\( c \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex].
Step 3: Simplify if possible
Check if there are any common factors in both terms that can be factored out, though in this case the terms do not share a factor that can simplify the expression further.
Step 4: Expansion and explanation
1. First term: [tex]\( 36 c y^5 \)[/tex]
- This term involves the coefficient 36, the variable [tex]\( c \)[/tex], and the variable [tex]\( y \)[/tex] raised to the power of 5.
- Multiplying [tex]\( 36 \)[/tex] with [tex]\( c \)[/tex] and [tex]\( y^5 \)[/tex] gives us [tex]\( 36 c y^5 \)[/tex].
2. Second term: [tex]\( -56 c^2 y^3 z \)[/tex]
- This term involves the coefficient -56, the variable [tex]\( c \)[/tex] squared (i.e., [tex]\( c^2 \)[/tex]), the variable [tex]\( y \)[/tex] raised to the power of 3, and the variable [tex]\( z \)[/tex].
- Multiplying [tex]\(-56\)[/tex] with [tex]\( c^2 \)[/tex], [tex]\( y^3 \)[/tex], and [tex]\( z \)[/tex] gives us [tex]\( -56 c^2 y^3 z \)[/tex].
Final Expression
Putting both terms back together, we get the simplified expression:
[tex]\[ -56 c^2 y^3 z + 36 c y^5 \][/tex]
In conclusion, the expression simplifies and organizes as:
[tex]\[ -56 c^2 y^3 z + 36 c y^5 \][/tex]