Answer :
To determine the value of [tex]\(\sqrt{\sqrt{441} + \sqrt{16} + \sqrt{4}}\)[/tex], we can break down the problem step-by-step:
1. Calculate the inner square roots:
- First, find the square root of 441:
[tex]\[ \sqrt{441} = 21.0 \][/tex]
- Next, find the square root of 16:
[tex]\[ \sqrt{16} = 4.0 \][/tex]
- Lastly, find the square root of 4:
[tex]\[ \sqrt{4} = 2.0 \][/tex]
2. Sum the results of the inner square roots:
- Adding the values we obtained from the previous step:
[tex]\[ 21.0 + 4.0 + 2.0 = 27.0 \][/tex]
3. Calculate the square root of the sum:
- Finally, take the square root of the sum 27.0:
[tex]\[ \sqrt{27.0} = 5.196152422706632 \][/tex]
Thus, the value of [tex]\(\sqrt{\sqrt{441} + \sqrt{16} + \sqrt{4}}\)[/tex] is approximately [tex]\(5.196152422706632\)[/tex].
1. Calculate the inner square roots:
- First, find the square root of 441:
[tex]\[ \sqrt{441} = 21.0 \][/tex]
- Next, find the square root of 16:
[tex]\[ \sqrt{16} = 4.0 \][/tex]
- Lastly, find the square root of 4:
[tex]\[ \sqrt{4} = 2.0 \][/tex]
2. Sum the results of the inner square roots:
- Adding the values we obtained from the previous step:
[tex]\[ 21.0 + 4.0 + 2.0 = 27.0 \][/tex]
3. Calculate the square root of the sum:
- Finally, take the square root of the sum 27.0:
[tex]\[ \sqrt{27.0} = 5.196152422706632 \][/tex]
Thus, the value of [tex]\(\sqrt{\sqrt{441} + \sqrt{16} + \sqrt{4}}\)[/tex] is approximately [tex]\(5.196152422706632\)[/tex].