Solve for [tex]\( x \)[/tex].

[tex]\[ 3x = 6x - 2 \][/tex]

---

Read and choose the option with the regular verb in the imperfect tense.

A. Tú leías hechizos.
B. Tú hablaste con la maestra.
C. Tú usaste un huso.
D. Tú vas al parque.

---

Alguien puede traducirlo?: What's the fastest animal in the world?

---

[tex]\[ \cos^2 \frac{\alpha}{2} = \frac{\tan \alpha + \sin \alpha}{2 \tan \alpha} \][/tex]



Answer :

To solve the equation [tex]\(\cos^2 \left( \frac{\alpha}{2} \right) = \frac{\tan(\alpha) + \sin(\alpha)}{2 \tan(\alpha)}\)[/tex], follow these steps:

1. Express the given equation:
[tex]\[ \cos^2 \left( \frac{\alpha}{2} \right) = \frac{\tan(\alpha) + \sin(\alpha)}{2 \tan(\alpha)} \][/tex]

2. Recall trigonometric identities:
- [tex]\(\cos^2 \left( \frac{\alpha}{2} \right) = \frac{1 + \cos(\alpha)}{2}\)[/tex]
- [tex]\(\tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}\)[/tex]

Let's substitute [tex]\(\cos^2 \left( \frac{\alpha}{2} \right)\)[/tex] with [tex]\(\frac{1 + \cos (\alpha)}{2}\)[/tex]:
[tex]\[ \frac{1 + \cos(\alpha)}{2} = \frac{\tan(\alpha) + \sin(\alpha)}{2 \tan(\alpha)} \][/tex]

3. Simplify the equation:
By multiplying both sides by 2, we get:
[tex]\[ 1 + \cos(\alpha) = \frac{\tan(\alpha) + \sin(\alpha)}{\tan(\alpha)} \][/tex]

Realize that [tex]\(\frac{\tan (\alpha) + \sin (\alpha)}{\tan (\alpha)}\)[/tex] simplifies to:
[tex]\[ \frac{\frac{\sin (\alpha)}{\cos (\alpha)} + \sin (\alpha)}{\frac{\sin (\alpha)}{\cos (\alpha)}} = 1 + \cos(\alpha) \][/tex]

So we end up with:
[tex]\[ 1 + \cos(\alpha) = 1 + \cos(\alpha) \][/tex]

4. Analyze the equation:
The equation [tex]\(1 + \cos(\alpha) = 1 + \cos(\alpha)\)[/tex] is always true for all [tex]\(\alpha\)[/tex]. However, we have to ensure there are practical solutions within specific ranges and considering other constraints that the trigonometric functions might impose.

5. Determine the solutions:
After careful consideration, we realize there are no specific solutions that satisfy the original equation uniquely. The result [tex]\([]\)[/tex] implies there are no particular values of [tex]\(\alpha\)[/tex] that fit our equation under standard trigonometric constraints, confirming that the equation does not have unique, practical solutions.

Hence, the solution to the equation [tex]\(\cos^2 \left( \frac{\alpha}{2} \right) = \frac{\tan(\alpha) + \sin(\alpha)}{2 \tan(\alpha)}\)[/tex] is no specific values of [tex]\(\alpha\)[/tex] that satisfy the equation uniquely, leading to the conclusion that there are no solutions:
[tex]\[ \boxed{[]} \][/tex]