Answer :

Sure! Let's solve the expression step-by-step:

Given the expression:
[tex]\[ (x - y) \left(10x^2 + 25y^2 - 35xy - x + y\right) \][/tex]

We need to expand this expression by distributing [tex]\((x - y)\)[/tex] through the polynomial inside the parentheses. Let's do this one term at a time.

1. Multiply [tex]\(x\)[/tex] by each term in the polynomial:
[tex]\[ x \cdot (10x^2 + 25y^2 - 35xy - x + y) \][/tex]
[tex]\[ = 10x^3 + 25xy^2 - 35x^2y - x^2 + xy \][/tex]

2. Multiply [tex]\(-y\)[/tex] by each term in the polynomial:
[tex]\[ -y \cdot (10x^2 + 25y^2 - 35xy - x + y) \][/tex]
[tex]\[ = -10x^2y - 25y^3 + 35xy^2 + yx - y^2 \][/tex]

3. Combine all the terms together:
[tex]\[ 10x^3 + 25xy^2 - 35x^2y - x^2 + xy - 10x^2y - 25y^3 + 35xy^2 + yx - y^2 \][/tex]

4. Group and combine like terms:
[tex]\[ 10x^3 \][/tex]
[tex]\[ (-35x^2y - 10x^2y - x^2) = -45x^2y - x^2 \][/tex]
[tex]\[ (25xy^2 + 35xy^2 + xy + yx) = 60xy^2 + 2xy \][/tex]
[tex]\[ -25y^3 \][/tex]
[tex]\[ -y^2 \][/tex]

Putting it all together, we get the expanded expression:
[tex]\[ 10x^3 - 45x^2y - x^2 + 60xy^2 + 2xy - 25y^3 - y^2 \][/tex]

This is the fully expanded form of the given expression.