Read the following description of a relationship:

Maura was already 73 kilometers south of Chicago when she started to drive further south at a speed of 72 kilometers per hour.

Let [tex]$h$[/tex] represent the number of hours since Maura started to drive further south and [tex]$k$[/tex] represent the number of kilometers she is south of Chicago.

Complete the table using the relationship between [tex][tex]$h$[/tex][/tex] and [tex]$k$[/tex].

\begin{tabular}{|c|c|}
\hline
[tex]$h$[/tex] & [tex]$k$[/tex] \\
\hline
2 & [tex]$\square$[/tex] \\
\hline
4 & [tex]$\square$[/tex] \\
\hline
6 & [tex]$\square$[/tex] \\
\hline
8 & [tex]$\square$[/tex] \\
\hline
\end{tabular}



Answer :

To determine Maura's distance south of Chicago, we need to use the given relationship between the number of hours [tex]\( h \)[/tex] she has driven and the total distance [tex]\( k \)[/tex] she is south of Chicago. We start by recalling that Maura was initially 73 kilometers south of Chicago and she continues driving further south at a speed of 72 kilometers per hour.

The formula to calculate the total distance [tex]\( k \)[/tex] she is south of Chicago after [tex]\( h \)[/tex] hours is:
[tex]\[ k = 73 + 72h \][/tex]

Let's calculate [tex]\( k \)[/tex] for each value of [tex]\( h \)[/tex] given in the table:

1. When [tex]\( h = 2 \)[/tex]:
[tex]\[ k = 73 + 72 \times 2 \][/tex]
[tex]\[ k = 73 + 144 \][/tex]
[tex]\[ k = 217 \][/tex]

2. When [tex]\( h = 4 \)[/tex]:
[tex]\[ k = 73 + 72 \times 4 \][/tex]
[tex]\[ k = 73 + 288 \][/tex]
[tex]\[ k = 361 \][/tex]

3. When [tex]\( h = 6 \)[/tex]:
[tex]\[ k = 73 + 72 \times 6 \][/tex]
[tex]\[ k = 73 + 432 \][/tex]
[tex]\[ k = 505 \][/tex]

4. When [tex]\( h = 8 \)[/tex]:
[tex]\[ k = 73 + 72 \times 8 \][/tex]
[tex]\[ k = 73 + 576 \][/tex]
[tex]\[ k = 649 \][/tex]

Now we can complete the table:

[tex]\[ \begin{tabular}{|c|c|} \hline $h$ & $k$ \\ \hline 2 & 217 \\ \hline 4 & 361 \\ \hline 6 & 505 \\ \hline 8 & 649 \\ \hline \end{tabular} \][/tex]